首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Students’ experiences with proving in schools often lead them to see proof as a static product rather than a negotiated process that can help students justify and make sense of mathematical ideas. We investigated how authority manifested in whole-class proving episodes within Ms. Finley’s high school geometry classroom. We designed a coding scheme that helped us identify the proving actions and interactions that occurred during whole-class proving and how Ms. Finley and her students contributed to those processes. By considering the authority over proof initiation, proof construction, and proof validation, the episodes illustrate how whole-class proving interactions might relate to students’ potential development (or maintenance) of authoritative proof schemes. In particular, the authority of the teacher and textbook limited students’ opportunities to engage collectively in proving and sometimes allowed invalid arguments to be accepted in the public discourse. We offer suggestions for research and practice with respect to authority and proof instruction.  相似文献   

2.
3.
Authority becomes shared in mathematics classrooms when perceived sources of valid mathematical knowledge extend beyond the teacher/textbook and allow both students and disciplinary modes of reasoning to hold authority. The goal of this research is to better understand classroom situations that are intended to facilitate shared authority over proof, namely small-group episodes where students are granted authority (Gerson & Bateman, 2010) to co-construct mathematical proofs. We sought to better understand the content of undergraduate students’ attention during group proving and the sources of legitimacy for students. Using Stylianides’ (2007) definition of proof as an analytical frame, we found that student discourse focused primarily upon the mode of argumentation, followed by the mode of argument representation, and then the set of accepted statements. We identified four themes with respect to the sources of authority students relied upon in their group proving: (1) the course rubric, (2) peers’ confidence, (3) form and symbols, and (4) logical structure. Implications for research and practice are presented.  相似文献   

4.
As mathematics teachers attempt to promote classroom discourse that emphasizes reasoning about mathematical concepts and supports students' development of mathematical autonomy, not all students will participate similarly. For the purposes of this research report, I examined how 15 seventh-grade students participated during whole-class discussions in two mathematics classrooms. Additionally, I interpreted the nature of students' participation in relation to their beliefs about participating in whole-class discussions, extending results reported previously (Jansen, 2006) about a wider range of students' beliefs and goals in discussion-oriented mathematics classrooms. Students who believed mathematics discussions were threatening avoided talking about mathematics conceptually across both classrooms, yet these students participated by talking about mathematics procedurally. In addition, students' beliefs about appropriate behavior during mathematics class appeared to constrain whether they critiqued solutions of their classmates in both classrooms. Results suggest that coordinating analyses of students' beliefs and participation, particularly focusing on students who participate outside of typical interaction patterns in a classroom, can provide insights for engaging more students in mathematics classroom discussions.  相似文献   

5.
Validating proofs and counterexamples across content domains is considered vital practices for undergraduate students to advance their mathematical reasoning and knowledge. To date, not enough is known about the ways mathematics majors determine the validity of arguments in the domains of algebra, analysis, geometry, and number theory—the domains that are central to many mathematics courses. This study reported how 16 mathematics majors, including eight specializing in secondary mathematics education, who had completed more proof-based courses than transition-to-proof classes evaluated various arguments. The results suggest that the students use one of the following strategies in proof and counterexample validation: (1) examination of the argument's structure and (2) line-by-line checking with informal deductive reasoning, example-based reasoning, experience-based reasoning, and informal deductive and example-based reasoning. Most students tended to examine all steps of the argument with informal deductive reasoning across various tasks, suggesting that this approach might be problem dependent. Even though all participating students had taken more proof-related mathematics courses, it is surprising that many of them did not recognize global-structure or line-by-line content-based flaws presented in the argument.  相似文献   

6.
Realistic Mathematics Education supports students’ formalization of their mathematical activity through guided reinvention. To operationalize “formalization” in a proof-oriented instructional context, I adapt Sjogren's (2010) claim that formal proof explicates (Carnap, 1950) informal proof. Explication means replacing unscientific or informal concepts with scientific ones. I use Carnap's criteria for successful explication – similarity, exactness, and fruitfulness – to demonstrate how the elements of mathematical theory – definitions, axioms, theorems, proofs – can each explicate their less formal correlates. This lens supports an express goal of the instructional project, which is to help students coordinate semantic (informal) and syntactic (formal) mathematical activity. I demonstrate the analytical value of the explication lens by applying it to examples of students’ mathematical activity drawn from a design experiment in undergraduate, neutral axiomatic geometry. I analyze the chains of meanings (Thompson, 2013) that emerged when formal elements were presented readymade alongside those emerging from guided reinvention.  相似文献   

7.
Mathematical proof has many purposes, one of which is communication of the reasoning behind a mathematical insight. Research on teachers' views of the role that proof plays as mathematical communication has been limited. This study describes how one teacher conceptualized proof communication during two units on proof (coordinate geometry proofs and Euclidean proofs). Based on classroom observations, the teacher's conceptualization of communication in written proofs is recorded in four categories: audience, clarity, organization, and structure. The results indicate differences within all four categories in the way the idea of communication is discussed by the teacher. Implications for future studies include attention to teachers' beliefs about learning mathematics in the process of understanding teachers' conceptions of proof as a means of mathematical communication.  相似文献   

8.
Dongwon Kim  Mi-Kyung Ju 《ZDM》2012,44(2):149-160
The purpose of this study is to explore how students changes through learning to construct mathematical proofs in an inquiry-based middle school geometry class in Korea. Although proof has long been considered as one of the most important aspects of mathematics education, it is well-known that it is one of the most difficult areas of school mathematics for students. The geometry inquiry classroom (GIC) is an experimental class designed to teach geometry, especially focusing on teaching proof, based on students’ own inquiry. Based on a 2-year participant observation in the GIC, this study was conducted to address the following research question: how has students’ practice of mathematical proof been changed through their participation in the GIC? The in-depth analysis of the classroom discourse identified three stages through which the students’ practice of mathematical proof was transformed in the GIC: ‘emergent understanding of proof’, ‘proof learning as a goal-oriented activity’, ‘experiencing proof as the practice of mathematics’. The study found that as learning evolved through these stages, so the mathematics teacher’s role shifted from being an instructor to a mediator of communication. Most importantly, this research showed that the GIC has created a learning environment where students develop their competence in constructing meaningful mathematical proof and grow to be ‘a human who proves’, ultimately ‘a person who playfully engages with mathematics’.  相似文献   

9.
This paper employs the commognitive frame (Sfard, 2008) to investigate how experiences with tangents across mathematical domains leave their marks on students’ subsequent work with tangents. To this aim, I introduce the notion of the discursive footprint of tangents and its characteristics by reviewing how tangents are used across mathematical domains in school textbooks. Manifestations of this footprint were sought in 182 undergraduate mathematics students’ responses to a questionnaire about tangents by labelling their responses and by identifying patterns in the endorsed narratives. Manifestations include the identification of characteristics of sole (and combination of) discourses (geometry, algebra, calculus, mathematical analysis) in student responses. Five themes emerged from the analysis: apparent replication of word use in different narratives; geometry-local hybrid discourse; endorsement of conflicting narratives; enrichment of familiar narratives with new words; and, mathematical analysis as a subsuming discourse. Finally, I discuss the potency of the discursive footprint in research and teaching.  相似文献   

10.
Aiso Heinze 《ZDM》2004,36(5):150-161
In this article we report on an interview study involving ten grade 8 students. These interviews served as a qualitative supplement for a large-scale quantitative study on proof and argumentation (N=659). During videotaped interviews the students were asked to solve geometrical proof problems. The results indicate that students’ difficulties with proof and logical argumentation may be explained by insufficient knowledge of facts, deficits in their methodological knoledge about mathematical proofs, and a lack of knowledge with respect to developing and implementing a proof strategy. Low-achieving students show difficulties with respect to all these three aspects, whereas high-achieving students’ difficulties are mainly based on deficits of developing an adequate and correct proof strategy.  相似文献   

11.
Combinatorics is an area of mathematics with accessible, rich problems and applications in a variety of fields. Combinatorial proof is an important topic within combinatorics that has received relatively little attention within the mathematics education community, and there is much to investigate about how students reason about and engage with combinatorial proof. In this paper, we use Harel and Sowder’s (1998) proof schemes to investigate ways that students may characterize combinatorial proofs as different from other types of proof. We gave five upper-division mathematics students combinatorial-proof tasks and asked them to reflect on their activity and combinatorial proof more generally. We found that the students used several of Harel and Sowder’s proof schemes to characterize combinatorial proof, and we discuss whether and how other proof schemes may emerge for students engaging in combinatorial proof. We conclude by discussing implications and avenues for future research.  相似文献   

12.
This article presents teaching ideas designed to support the belief that students at all levels (preservice teachers, majors, secondary and elementary students) need exposure to non-routine problems that illustrate the effective use of technology in their resolution. Such use provides students with rapid and accurate data collection, leading them to sound conjectures, which is a precursor to learning mathematical proof. Students will therefore learn that while technology can be an effective tool for investigating problems, the onus of providing convincing arguments and proofs of their conjectures rests squarely on their shoulders. The paper describes how a diverse group of students took advantage of the power of the TI-92 to enhance their chances of reaching this final stage of proof. A series of mathematical problems are presented and analysed with a keen eye on the appropriate integration of the TI-92. A student survey was used to inform the results. To conclude, several challenging, yet accessible, non-routine problems were completed by students as undergraduate research projects, all using the TI-92 as a laboratory. Although most of the problems presented here have a discrete mathematics flavour, the authors' message is independent of the mathematical topic chosen.  相似文献   

13.
This report documents how one undergraduate student used set-based reasoning to reinvent logical principles related to conditional statements and their proofs. This learning occurred in a teaching experiment intended to foster abstraction of these logical relationships by comparing the relationships between predicates within the conditional statements and inference structures among various proofs (in number theory and geometry). We document the progression of Theo’s set-based emergent model (Gravemeijer, 1999) from a model-of the truth of statements to a model-for logical relationships. This constitutes some of the first evidence for how students can abstract such logical concepts in this way and provides evidence for the viability of the learning progression that guided the instructional design.  相似文献   

14.
Classrooms which involve students in mathematical discourse are becoming ever more prominent for the simple reason that they have been shown to support student learning and affinity for content. While support for outcomes has been shown, less is known about how or why such strategies benefit students. In this paper, we report on one such finding: namely that when students engage with another’s reasoning, as necessitated by interactive conversation, it supports their own conceptual growth and change. This qualitative analysis of 10 university students provides insight into what engaging with another’s reasoning entails and suggests that higher levels of engagement support higher levels of conceptual growth. We conclude with implications for instructional practice and future research.  相似文献   

15.
Frequently, in the US students’ work with proofs is largely concentrated to the domain of high school geometry, thus providing students with a distorted image of what proof entails, which is at odds with the central role that proof plays in mathematics. Despite the centrality of proof in mathematics, there is a lack of studies addressing how to integrate proof into other mathematical domains. In this paper, we discuss a teaching experiment designed to integrate algebra and proof in the high school curriculum. Algebraic proof was envisioned as the vehicle that would provide high school students the opportunity to learn not only about proof in a context other than geometry, but also about aspects of algebra. Results from the experiment indicate that students meaningfully learned about aspects of both algebra and proof in that they produced algebraic proofs involving multiple variables, based on conjectures they themselves generated.  相似文献   

16.
This article describes a study of backgrounds, beliefs, and attitudes of teachers about proofs. Thirty preservice elementary teachers enrolled in a mathematics content course and 21 secondary mathematics teachers in an abstract algebra course were surveyed. The study explored four issues: preservice teachers' experiences/exposure to proof, their beliefs about what constitutes a proof and the role of proof in mathematics, and their beliefs about when proof should be introduced in grades K-12. Results of the survey are described as a means for discussing the backgrounds and beliefs future teachers hold with regard to teaching proofs in their own classrooms. Finally, a short collection of sample explorations and questions, which could be used to encourage the thinking and writing of proofs in grades K-12, is provided. One of these questions was posed to 215 secondary students; examples of their reasoning and a discussion of the various techniques employed by the students are included.  相似文献   

17.
This paper is a case study of the teaching of an undergraduate abstract algebra course with a particular focus on the manner in which the students presented proofs and the class engaged in a subsequent discussion of those proofs that included validating the work. This study describes norms for classroom work that include a set of norms that the presenter of a proof was responsible for enacting, including only using previously agreed upon results, as well as a separate set that the audience was to enact related to developing their understanding of the presented proof and validating the work. The study suggests that the students developed a sense of communal and individual responsibility for contributing to growing the body of mathematical knowledge known by the class, with an implied responsibility for knowing the already developed mathematics. Moreover, the behaviors that norms prompted the students to engage were those that literature suggests leads to increased comprehension of proofs.  相似文献   

18.
We analyze how three seventh grade mathematics teachers from a majority Latino/a, linguistically diverse region of Texas taught the same lesson on interpreting graphs of motion as part of the Scaling Up SimCalc study (Roschelle et al., 2010). The students of two of the teachers made strong learning gains as measured by a curriculum-aligned assessment, while the students of the third teacher were less successful. To investigate these different outcomes, we compare the teaching practices in each classroom, focusing on the teachers’ use of class time and instructional format, their use of mathematical discourse practices in whole-class discussions, and their responses to student contributions. We show that the more successful teachers allowed time for students to use the curriculum and software and discuss it with peers, that they used formal mathematical discourse along with less formal language, and that they responded to student errors using higher-level moves. We conclude by discussing implications for teachers and mathematics educators, with special attention to issues related to the mathematics education of Latinos/as.  相似文献   

19.
Conceptual blending describes how humans condense information, combining it in novel ways. The blending process may create global insight or new detailed connections, but it may also result in a loss of information, causing confusion. In this paper, we describe the proof writing process of a group of four students in a university geometry course proving a statement of the form conditional implies conditional, i.e., (p  q)  (r  s). We use blending theory to provide insight into three diverse questions relevant for proof writing: (1) Where do key ideas for proofs come from?, (2) How do students structure their proofs and combine those structures with their more intuitive ideas?, and (3) How are students reasoning when they fail to keep track of the implication structure of the statements that they are using? We also use blending theory to describe the evolution of the students’ proof writing process through four episodes each described by a primary blend.  相似文献   

20.
Reasoning and proof play an important role in the mathematics classroom. However, prerequisites for the learning of mathematical reasoning and proof, such as logical competence or the understanding of concepts and proofs, are rarely taught explicitly. In an empirical survey with 106 students in grade 8 we investigated students' declarative and methodological knowledge related to some of these prerequisites. The results show that there are certain deficits which make it difficult for students to learn reasoning and proof.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号