首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper introduces a quadratic growth learning trajectory, a series of transitions in students’ ways of thinking (WoT) and ways of understanding (WoU) quadratic growth in response to instructional supports emphasizing change in linked quantities. We studied middle grade (ages 12–13) students’ conceptions during a small-scale teaching experiment aimed at fostering an understanding of quadratic growth as phenomenon of constantly-changing rate of change. We elaborate the duality, necessity, repeated reasoning framework, and methods of creating learning trajectories. We report five WoT: Variation, Early Coordinated Change, Explicitly Quantified Coordinated Change, Dependency Relations of Change, and Correspondence. We also articulate instructional supports that engendered transitions across these WoT: teacher moves, norms, and task design features. Our integration of instructional supports and transitions in students’ WoT extend current research on quadratic function. A visual metaphor is leveraged to discuss the role of learning trajectories research in unifying research on teaching and learning.  相似文献   

2.
Keiko Hino 《ZDM》2007,39(5-6):503-514
In this paper, I summarize the influence of mathematical problem solving on mathematics education in Japan. During the 1980–1990s, many studies had been conducted under the title of problem solving, and, therefore, even until now, the curriculum, textbook, evaluation and teaching have been changing. Considering these, it is possible to identify several influences. They include that mathematical problem solving helped to (1) enable the deepening and widening of our knowledge of the students’ processes of thinking and learning mathematics, (2) stimulate our efforts to develop materials and effective ways of organizing lessons with problem solving, and (3) provide a powerful means of assessing students’ thinking and attitude. Before 1980, we had a history of both research and practice, based on the importance of mathematical thinking. This culture of mathematical thinking in Japanese mathematics education is the foundation of these influences.  相似文献   

3.
Mathematical reasoning and problem solving are recognised as essential 21st century skills. However, international assessments of mathematical literacy suggest these are areas of difficulty for many students. Evidenced-based learning trajectories that identify the key ideas and strategies needed to teach mathematics for understanding and support these important capacities over time are needed to support teachers and curriculum developers so that they do not have to rely solely on mathematics content knowledge. Given this goal and recent evidence to suggest a relationship between the development of multiplicative thinking and mathematical reasoning, this paper explores the processes involved in developing a single, integrated scale for multiplicative thinking and mathematical reasoning using data from a four-year design-based project to establish learning and assessment frameworks for algebraic, geometrical and statistical reasoning in the middle years of schooling.  相似文献   

4.
Within the field of mathematics education, the central role language plays in the learning, teaching, and doing of mathematics is increasingly recognised, but there is not agreement about what this role (or these roles) might be or even about what the term ‘language’ itself encompasses. In this issue of ZDM, we have compiled a collection of scholarship on language in mathematics education research, representing a range of approaches to the topic. In this survey paper, we outline a categorisation of ways of conceiving of language and its relevance to mathematics education, the theoretical resources drawn upon to systematise these conceptions, and the methodological approaches employed by researchers. We identify four broad areas of concern in mathematics education that are addressed by language-oriented research: analysis of the development of students’ mathematical knowledge; understanding the shaping of mathematical activity; understanding processes of teaching and learning in relation to other social interactions; and multilingual contexts. A further area of concern that has not yet received substantial attention within mathematics education research is the development of the linguistic competencies and knowledge required for participation in mathematical practices. We also discuss methodological issues raised by the dominance of English within the international research community and suggest some implications for researchers, editors and publishers.  相似文献   

5.
Helen M. Doerr Prof. 《ZDM》2006,38(3):255-268
In this paper, I present the results of a case study of the practices of four experienced secondary teachers as they engaged their students in the initial development of mathematical models for exponential growth. The study focuses on two related aspects of their practices: (a) when, how and to what extent they saw and interpreted students' ways of thinking about exponential functions and (b) how they responded to the students' thinking in their classroom practice. Through an analysis of the teachers' actions in the classroom, I describe the teachers' developing knowledge when using modeling tasks with secondary students. The analysis suggests that there is considerable variation in the approaches that teachers take in listening to and responding to students' emerging mathematical models. Having a well-developed schema for how students might approach the task enabled one teacher to press students to express, evaluate, and revise their emerging models of exponential growth. Implications for the knowledge needed to teach mathematics through modeling are discussed.  相似文献   

6.
Recent work by researchers has focused on synthesizing and elaborating knowledge of students’ thinking on particular concepts as core progressions called learning trajectories. Although useful at the level of curriculum development, assessment design, and the articulation of standards, evidence is only beginning to emerge to suggest how learning trajectories can be utilized in teacher education. Our paper reports on two studies investigating practicing and prospective elementary teachers’ uses of a learning trajectory to make sense of students’ thinking about a foundational idea of rational number reasoning. Findings suggest that a mathematics learning trajectory supports teachers in creating models of students’ thinking and in restructuring teachers’ own understandings of mathematics and students’ reasoning.  相似文献   

7.
Counting problems offer opportunities for rich mathematical thinking, and yet there is evidence that students struggle to solve counting problems correctly. There is a need to identify useful approaches and thought processes that can help students be successful in their combinatorial activity. In this paper, we propose a characterization of an equivalence way of thinking, we discuss examples of how it arises mathematically in a variety of combinatorial concepts, and we offer episodes from a paired teaching experiment with undergraduate students that demonstrate useful ways in which students developed and leverage this way of thinking. Ultimately, we argue that this way of thinking can apply to a variety of combinatorial situations, and we make the case that it is a valuable way of thinking that should be prioritized for students learning combinatorics.  相似文献   

8.
I discuss two ways in which the Learning Through Activity (LTA) research program contributes to scientific progress in mathematics education: (a) providing general and content-specific constructs to explain conceptual learning and instructional design that corroborate and/or elaborate on previous work and (b) raising new questions/issues. The general constructs include using instructional design as testable models of learning and using theoretical constructs to guide real-time, instructional adaptations. In this sense, the general constructs promote understanding of linkages between conceptual learning and instruction in mathematics. The concept-specific constructs consist of empirically-grounded, hypothetical learning trajectories (HLTs) for fractional and multiplicative reasoning. Each HLT consists of specific, intended conceptual changes and tasks that can bring them forth. Questions raised for me by the LTA work involve inconsistencies between the stance on learning and reported teaching-learning interactions that effectively led to students’ abstraction of the intended mathematical concepts.  相似文献   

9.
Heinz Steinbring 《ZDM》2008,40(2):303-316
The study tries to show one line of how the German didactical tradition has evolved in response to new theoretical ideas and new—empirical—research approaches in mathematics education. First, the classical mathematical didactics, notably ‘stoffdidaktik’ as one (besides other) specific German tradition are described. The critiques raised against ‘stoffdidaktik’ concepts [for example, forms of ‘progressive mathematisation’, ‘actively discovering learning processes’ and ‘guided reinvention’ (cf. Freudenthal, Wittmann)] changed the basic views on the roles that ‘mathematical knowledge’, ‘teacher’ and ‘student’ have to play in teaching–learning processes; this conceptual change was supported by empirical studies on the professional knowledge and activities of mathematics teachers [for example, empirical studies of teacher thinking (cf. Bromme)] and of students’ conceptions and misconceptions (for example, psychological research on students’ mathematical thinking). With the interpretative empirical research on everyday mathematical teaching–learning situations (for example, the work of the research group around Bauersfeld) a new research paradigm for mathematics education was constituted: the cultural system of mathematical interaction (for instance, in the classroom) between teacher and students.  相似文献   

10.
11.
While many engineering educators have proposed changes to theway that mathematics is taught to engineers, the focus has oftenbeen on mathematical content knowledge. Work from the mathematicseducation community suggests that it may be beneficial to considera broader notion of mathematics: mathematical thinking. Schoenfeldidentifies five aspects of mathematical thinking: the mathematicscontent knowledge we want engineering students to learn as wellas problem-solving strategies, use of resources, attitudes andpractices. If we further consider the social and material resourcesavailable to students and the mathematical practices studentsengage in, we have a more complete understanding of the breadthof mathematics and mathematical thinking necessary for engineeringpractice. This article further discusses each of these aspectsof mathematical thinking and offers examples of mathematicalthinking practices based in the authors' previous empiricalstudies of engineering students' and practitioners' uses ofmathematics. The article also offers insights to inform theteaching of mathematics to engineering students.  相似文献   

12.
In this study, we investigate students’ ways of understanding graphing tasks involving quantitative relationships in which time functions as an implicit variable. Through task-based interviews of students ages 14–16 in a summer mathematics program, we observe a variety of ways of understanding, including thematic or visual association, pointwise thinking, and reasoning parametrically about changes in the two variables to be graphed. We argue that, rather than comprising a hierarchy, these ways of understanding complement one another in helping students discover an invariant relationship between two dynamically varying quantities, and develop a graph of the relationship that captures this invariance. From these ways of understanding, we conjecture several mathematical meanings for graphing that may account for students’ behavior when graphing quantitative relationships.  相似文献   

13.
John Berry 《ZDM》2002,34(5):212-220
Mathematical modelling as one component of problem solving is an important part of the mathematics curriculum and problem solving skills are often the most quoted generic skills that should be developed as an outcome of a programme of mathematics in school, college and university. Often there is a tension between mathematics seen at all levels as ‘a body of knowledge’ to be delivered at all costs and mathematics seen as a set of critical thinking and questioning skills. In this era of powerful software on hand-held and computer technologies there is an opportunity to review the procedures and rules that form the ‘body of knowledge’ that have been the central focus of the mathematics curriculum for over one hundred years. With technology we can spend less time on the traditional skills and create time for problem solving skills. We propose that mathematics software in general and CAS in particular provides opportunities for students to focus on the formulation and interpretation phases of the mathematical modelling process. Exploring the effect of parameters in a mathematical model is an important skill in mathematics and students often have difficulties in identifying the different role of variables and parameters This is an important part of validating a mathematical model formulated to describe, a real world situation. We illustrate how learning these skills can be enhanced by presenting and analysing the solution of two optimisation problems.  相似文献   

14.
Participating in reform-oriented mathematical discussion calls on teachers and students to listen to one another in new and different ways. However, listening is an understudied dimension of teaching and learning mathematics. In this analysis, we draw on a sociocultural perspective and a conceptual framing of three types of listening—evaluative, interpretive, and hermeneutic (Davis, 1996, 1997)—in order to interpret the listening interactions in a fourth-grade classroom. Using interaction analysis (Jordan & Henderson, 1995) to pay close attention to how participants responded to one another during a carefully selected lesson segment, findings reveal that these students listened in complex ways with explicit support from their teacher. From this revelatory case, we offer a framework for understanding the teacher’s role in supporting complex listening.  相似文献   

15.
Proof and reasoning are central to learning mathematics with understanding. Yet proof is seen as challenging to teach and to learn. In a capstone course for preservice teachers, we developed instructional modules that guided prospective secondary mathematics teachers (PSTs) through a cycle of learning about the logical aspects of proof, then planning and implementing lessons in secondary classrooms that integrate these aspects with traditional mathematics curriculum in the United States. In this paper we highlight our framework on mathematical knowledge for teaching proof and focus on some of the logical aspects of proof that are seen as particularly challenging (four proof themes). We analyze 60 lesson plans, video recordings of a subset of 13 enacted lessons, and the PSTs’ self- reported data to shed light on how the PSTs planned and enacted lessons that integrate these proof themes. The results provide insights into successes and challenges the PSTs encountered in this process and illustrate potential pathways for preparing PSTs to enact reasoning and proof in secondary classrooms. We also highlight the design principles for supporting the development of PSTs’ mathematical knowledge for teaching proof.  相似文献   

16.
Discourse has always been at the heart of teaching. In more recent years, the mathematics education community has also turned its attention towards understanding the role of discourse in mathematics teaching and learning. Using earlier classifications of discourse, in this paper, we looked at three types of classrooms: classrooms that engage in high discourse, low discourse and a hybrid of the two. We aimed to understand how the elements of each discourse affected classroom learning, relationships between teachers and students, and participatory structures for students. Overall, our findings highlight the important relationship between cognitively demanding tasks and mathematical talk, and the power of discourse as a “thinking device” as opposed to mere conduit of knowledge. Our work also points to the under-theorized nature of hybrid discourse in mathematics classrooms, thereby providing some directions for pedagogy and further research.  相似文献   

17.
18.
Over the past 20 years learning trajectories and learning progressions have gained prominence in mathematics and science education research. However, use of these representations ranges widely in breadth and depth, often depending on from what discipline they emerge and the type of learning they intend to characterize. Learning trajectories research has spanned from studies of individual student learning of a single concept to trajectories covering a full set of content standards across grade bands. In this article, we discuss important theoretical assumptions that implicitly guide the development and use of learning trajectories and progressions in mathematics education. We argue that diverse theoretical conceptualizations of what it means for a student to “learn” mathematics necessarily both constrains and amplifies what a particular learning trajectory can capture about the development of students’ knowledge.  相似文献   

19.
Recent research on teachers’ use of student mathematical thinking (SMT) and recommendations for effective mathematics instruction claim that how teachers respond to SMT has great impact on student mathematical learning in the classroom. This study examined some Chinese mathematics teachers’ responses to student in-the-moment mathematical thinking that emerged during whole class discussion. The findings of this study revealed that the majority of Chinese elementary mathematics teachers in the data involved the whole group of students to make sense of in-the-moment SMT. They either invited students to digest SMT involved in the instance or provided an extension of the instance to further develop student mathematical understanding.  相似文献   

20.
In his work on human cognition, Bruner (The culture of education, Harvard University Press, Cambridge, 1996) distinguishes between narrative and paradigmatic modes of thinking. While the latter is closely associated with mathematics, Bruner’s writings suggest that the former contributes non-trivially to the learning of mathematics. In this paper, we argue that the very nature of dynamic mathematical representations—being intrinsically temporal, occurring over time—offer very different opportunities for narrative thinking than do the static diagrams and pictures traditionally available to learners. Using examples from our research, we analyse these opportunities both in terms of their potential for enhancing understanding and for their relation to the kind of paradigmatic thinking that usually constitutes mathematical knowledge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号