首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
给出了硅微机械谐振陀螺仪的结构,介绍了硅微机械谐振陀螺仪的工作原理,详细推导并给出了陀螺仪的输出频率和标度因数非线性的计算公式;基于影响谐振陀螺仪标度因数的参数,分析了由谐振器的振幅和梳齿静电驱动力引起的硅微机械谐振陀螺仪的非线性特性,给出了振动幅度与谐振频率关系的表达式.实验结果表明,陀螺仪的整体性能主要取决于谐振器振动幅度的稳定性.  相似文献   

2.
在研制基于静电刚度谐振式微加速度计过程中,发现增大激励电压可以提高输出信噪比,但响应的振动幅度将不稳定,同时谐振频率也将会出现漂移。针对上述问题,建立了静电驱动微机械谐振系统等效行为模型,非线性动力学理论分析结果与实验现象一致,总结出需要从加速度计结构参数优化和减小激励电压两个方面来减小频率漂移和提高分辨率。将结构优化准则应用到制造的微加速度计上,实验结果表明:在5 V敏感电压下,闭环条件下单梁加速度计灵敏度为58 Hz/g,分辨率为3.5 mg。  相似文献   

3.
硅微陀螺数字化双闭环驱动控制方法   总被引:1,自引:0,他引:1  
为了提高硅微机械陀螺的性能,基于FPGA设计并实现了一种数字化双闭环驱动控制电路.介绍了通过相位控制实现频率跟踪和直流控制实现幅值稳定的驱动控制原理,采用FPGA扩展ADC、DAC的方法设计出相应控制回路.分别采用扫频和直流扫描测试的方法确定回路中相位偏差到频率调整量与幅度偏差到电平调整量的转换系数.利用Xilinx ISE软件设计了硬件接口、参数解算、滤波处理、信号生成等逻辑;利用EDK软件设计了数据存取、控制算法、扫频测试、串口通讯等程序.试验结果表明,系统稳定工作后,频率跟踪误差与幅度控制相对稳定性分别在10-6和10-4量级上.  相似文献   

4.
闫寒  张文明 《力学进展》2019,49(1):201903
微纳通道机械谐振器在液体环境中具有超高的谐振频率、品质因子和灵敏度,常用于液体环境中的高精度检测与表征,在生物、医药、化工等领域有着广阔的应用前景.微纳通道机械谐振器的检测与表征功能高度依赖其动力学特性,而此类器件是由谐振结构、内部流体、被检测物和外部激励等多因素组成的耦合系统,涉及的动力学问题较为复杂,已成为谐振器件研究中的前沿热点和瓶颈问题.本文综述了微纳通道机械谐振器的研究进展,总结了谐振器件实现高精度检测与表征功能时的动力学设计原理,详细讨论了谐振器件的稳定性、频响特性、能量耗散、频率波动等动态特性,阐明了不同动力学问题的物理机制及其对谐振器性能的影响规律,可为深入厘清微纳通道机械谐振器的动力学设计问题,提高器件动态性能提供理论参考和技术支撑,对超高频、超高灵敏度谐振器的设计、制造及应用发展具有重要意义.   相似文献   

5.
微纳通道机械谐振器在液体环境中具有超高的谐振频率、品质因子和灵敏度,常用于液体环境中的高精度检测与表征,在生物、医药、化工等领域有着广阔的应用前景.微纳通道机械谐振器的检测与表征功能高度依赖其动力学特性,而此类器件是由谐振结构、内部流体、被检测物和外部激励等多因素组成的耦合系统,涉及的动力学问题较为复杂,已成为谐振器件研究中的前沿热点和瓶颈问题.本文综述了微纳通道机械谐振器的研究进展,总结了谐振器件实现高精度检测与表征功能时的动力学设计原理,详细讨论了谐振器件的稳定性、频响特性、能量耗散、频率波动等动态特性,阐明了不同动力学问题的物理机制及其对谐振器性能的影响规律,可为深入厘清微纳通道机械谐振器的动力学设计问题,提高器件动态性能提供理论参考和技术支撑,对超高频、超高灵敏度谐振器的设计、制造及应用发展具有重要意义.  相似文献   

6.
微纳通道机械谐振器在液体环境中具有超高的谐振频率、品质因子和灵敏度,常用于液体环境中的高精度检测与表征,在生物、医药、化工等领域有着广阔的应用前景.微纳通道机械谐振器的检测与表征功能高度依赖其动力学特性,而此类器件是由谐振结构、内部流体、被检测物和外部激励等多因素组成的耦合系统,涉及的动力学问题较为复杂,已成为谐振器件研究中的前沿热点和瓶颈问题.本文综述了微纳通道机械谐振器的研究进展,总结了谐振器件实现高精度检测与表征功能时的动力学设计原理,详细讨论了谐振器件的稳定性、频响特性、能量耗散、频率波动等动态特性,阐明了不同动力学问题的物理机制及其对谐振器性能的影响规律,可为深入厘清微纳通道机械谐振器的动力学设计问题,提高器件动态性能提供理论参考和技术支撑,对超高频、超高灵敏度谐振器的设计、制造及应用发展具有重要意义.  相似文献   

7.
生物芯片压电微流体泵液-固耦合系统模态分析   总被引:3,自引:0,他引:3  
对压电微流体泵粘性流体周期流动进行厚度积分平均近似,得到包含粘性的,非线性浅水波动方程,并采用有限元法得到微泵液体压强矩阵方程.液体压强矩阵方程和压电硅片振动有限元方程耦合,得到一个包含微泵进出口扩散管的液-固耦合系统振动方程.液-固耦合系统的模态分析结果表明,做泵液-固耦合系统的自然频率比不耦合的硅片振动自然频率低很多.随着微泵厚度的减少,液体附加质量和粘性阻尼对耦合系统自然频率的影响更加明显.同时发现,对应的压电片振型函数在液-固耦合前后没有明显变化,还给出硅片-阶模态的振幅-频率特征曲线,对薄型无阀压电微流体泵,浅水波模型合理地表达了微泵液体流动和压电硅片振动的相互作用,以及液体附加质量和粘性阻尼对微泵液-固耦合系统动力特征的影响。  相似文献   

8.
建立了强电场作用下考虑材料和几何非线性的石英晶体板厚度剪切振动和弯曲振动的非线性方程组。基于厚度剪切振动近似理论的线性位移解,利用伽辽金法将非线性偏微分方程组转化为关于时间变量的常微分方程组。接着利用逐次近似法获得了石英晶体板厚度剪切振动和弯曲振动耦合的频率响应关系,并绘制了不同电压下厚度剪切振动的频率响应曲线图。数值计算结果表明,电压对石英晶体板厚度剪切振动的频率有着显著影响,其引起的频率漂移值超过了常见压电谐振器的允许值。所建立的方程可以用于石英晶体谐振器的非线性有限元分析和偏场效应求解。  相似文献   

9.
传统CFD方法在振动钝体绕流计算中常借助动网格技术,网格再生任务繁重。针对于此,本文利用可在静止网格中计算动边界绕流问题的浸入边界算法(IBM),编写数值模拟程序,分别对竖向强迫正弦振动方柱(Re=UD/v=103、振幅恒定、振动频率变化)以及桥梁断面(Re=UB/v=7.5×103、振幅、振动频率均变化)展开气动特性和流场特征结构分析。初步研究结果表明,振幅恒定为方柱高度的14%时,其涡脱锁定区长度为0.06~0.2,锁定区后端(Stc0.2)振动方柱涡脱频率回归静止涡脱频率;不同振幅下的桥梁断面阻力系数均在静止涡脱频率处产生峰值,桥梁断面升力系数则在此处均出现归零效应,且振幅越大,归零效应愈明显。  相似文献   

10.
旋转载体驱动微机械陀螺是一种新型的振动式MEMS陀螺,它没有微机械陀螺通常所具有的驱动结构,而只有检测模态。它安装于旋转载体上,巧妙地利用了载体的自旋作为驱动,从而使得敏感质量获得角动量。当载体发生横向转动时,敏感质量将受到科里奥利力的作用。在进动力矩、弹性力矩和阻尼力矩的共同作用下,敏感质量将产生周期性振动。振动频率对应于载体自旋频率,振动幅度与载体输入角速度大小成比例。由此工作机理,得出了敏感元件的动力学方程,并基于动力学方程建立了陀螺标度因数的误差模型。接着,根据误差模型,对标度因数的稳定性进行了分析和实际测试。分析和实验数据说明,载体自旋频率的变化是造成标度因数不稳定的主要原因。为了保证陀螺测量精度,提出了一种抑制载体自旋频率变化对标度因数影响的补偿算法,提高标度因数稳定性。最后,针对该算法的有效性,进行了实验验证。实验结果表明,此种方法能有效地提高标度因数的稳定性,标度因数相对于自旋频率变化的影响因子由补偿前的1.31 m V/(°/s)/Hz下降至7.14×10-3 m V/(°/s)/Hz。  相似文献   

11.
静电驱动微机电系统(MEMS)共振传感器因其结构简单、应用广泛等优点引起了研究人员广泛的关注,共振传感器件耦合系统在非线性静电力、压膜阻尼、参数激励下呈现出较复杂的非线性振动、不稳定性、分岔与混沌行为.提出参数激励作用下静电驱动微机电系统中梁式微结构共振传感器的动力学模型,采用多尺度方法对微系统的动力学方程进行摄动分析,探讨直流偏置电压、压膜阻尼和交流激励电压幅值对系统频率响应、共振频率的影响规律,结果表明:直流偏置电压和交流电压幅值都具有软化效应,且使共振频率漂移到较小的数值范围,压膜阻尼对共振频率的影响较小,但是增大压膜阻尼会使稳态振幅的峰值明显下降,为静电驱动微机电系统共振传感器的动力学分析与设计提供参考.  相似文献   

12.
电活性聚合物圆柱壳静态与动态电压下的响应及稳定性   总被引:1,自引:1,他引:0  
摘要:在电活性聚合物圆柱壳内外表面施加电压,圆柱壳会变薄并且伸长,因此相同的电压会在圆柱壳内产生更大的电场。这个正反馈可能使圆柱壳厚度不断变薄,最终导致其失稳破坏。本文研究了电活性聚合物圆柱壳在静态和周期电压作用下的响应及稳定性问题。采用neo-Hookean材料模型得到描述圆柱壳表面运动的非线性常微分方程。给出了圆柱壳在不同厚度和边界条件下外加电压随圆柱壳变形的变化曲线,结果表明存在一个临界电压,当外加电压大于这一临界值时,圆柱壳将被破坏。同时,也讨论了厚度和边界条件对临界电压的影响。圆柱壳在正弦周期电压作用下,其运动随时间的变化是周期性的或拟周期性的非线性振动。给出了圆柱壳振动固有频率的计算结果,采用打靶法得到圆柱壳振动的周期解,并且用数值法研究了周期解的稳定性。采用数值仿真得到圆柱壳振动振幅随外加动态电压激励频率的变化曲线,结果表明圆柱壳会发生多频共振,共振时圆柱壳振幅发生跳跃,导致圆柱壳失稳破坏。最后给出共振点临近点的振动曲线和相图,并对其振动特性进行讨论。  相似文献   

13.
针对硅微谐振加速度计在进行结构设计时,如何根据模态特性选取工作模态这一问题,比较分析了加速度计工作在两种不同振动模态下的性能参数。首先采用刚度法分析了谐振器的振动特性,得出能够反映谐振器振动状态的两种模态即同相振动模态和反相振动模态,结合理论推导和仿真结果得出两种振动模态下谐振频率差值与标度因数差值呈线性关系;其次通过分析两种振动模态下的能量分布情况,得出两种振动模态下谐振器的品质因数与振梁振动幅值之间的关系,同相模态振动一个周期所消耗能量约为反相模态所消耗能量的2倍;最后通过评估硅微谐振加速度计的噪声,阐明了两种振动模态下部分噪声分量不同的原因并进行了实验验证。实验结果表明,在相同驱动电压下,同相模态相比反相模态总体噪声增大25.7%。该研究为设计硅微谐振式加速度计时,确定谐振器的振动模态及驱动方案提供了参考依据。  相似文献   

14.
微机电系统(micro-electro-mechanical system,MEMS) 是指内部微结构尺寸在微米甚至纳米量级的微电子机械装置,是一个独立的智能系统. 长宽厚均处于微米量级的微平板为MEMS 中的典型结构,其声学和力学特性直接影响MEMS 的性能. 针对同时受声压激励和气膜力(通过考虑相同尺寸微平板振动引入) 作用的四边简支微平板结构,应用Cosserat 理论和Hamilton 原理,建立了考虑微尺度效应(本征长度和Knudsen 数)影响的声振耦合理论模型,并通过多重Fourier 展开法求解了耦合方程,得到了系统的传声损失结果. 通过频域分析,考虑微平板的不同振动频率、振动幅度和板间距,系统研究了不同尺度效应下微结构中气体薄膜所产生的阻尼力对微平板结构传声特性的影响. 研究发现尺度效应对于微结构的声振特性影响巨大,振动行为对微结构的传声特性也有很大影响,控制并减小微平板的振动幅度以及增大微平板的间距都能够提高微平板的声振性能. 研究结果为MEMS 中微平板的稳定性优化设计提供了理论参考.   相似文献   

15.
利用柔性板的实验模型研究了一种考虑作动器驱动力故障的鲁棒控制器。首先识别出粘贴压电促动器的柔性板振动控制系统实验模型,基于此利用改变压电片对联接数量来模拟促动器驱动故障,并设计了将驱动力变化提取成正则不确定块对角阵的方法,同时将剩余模态表示成高通滤波器,再通过引入虚拟不确定,构建了考虑外扰抑制和控制增益约束的综合控制器。数值仿真验证了闭环系统理论上的鲁棒稳定性。实测试验结果显示,与一般的μ控制器相比,当闭环过程中出现压电促动器驱动故障时,初始外扰下,控制结束时振幅峰峰值降低了3V,持续随机外扰下,降噪量提高了近3dB。数值仿真验证了闭环系统理论上的鲁棒稳定性。实测试验结果显示,与一般的μ控制器相比,当闭环过程中出现压电促动器驱动故障时,初始外扰下,控制结束时振幅峰峰值降低了3V,持续随机外扰下,降噪量提高近了3dB。  相似文献   

16.
电容式硅微机械加速度计作为一种惯性传感器件广泛运用于导航系统,但其温度特性较差,制约其综合性能的提高。为进一步提高闭环电容式微机械加速度计的标度因数稳定性,针对标度因数的温度漂移问题,提出了一种标度因数温漂抑制方法。通过调节预载电压来抑制标度因数温度漂移,根据测温电路输出对预载电压进行调节。实验结果表明,在-30℃~60℃的温度范围内,加速度计的标度因数温度系数由补偿前的213.7′10~(-6)/℃降低至42.7′10~(-6)/℃。所提出的抑制方法使标度因数温度性能得以显著提高。  相似文献   

17.
引入结构动力学方程建立了二维N-S/结构振动耦合方程组,采用双时间法建立了气固耦合方程组的非定常数值求解体系,研究了叶栅间的二维非定常粘性流动及叶栅振动特性。对两种叶型分别计算了不同折合振动频率下的流场,振动叶栅位移随时间变化的曲线表明,采用气固耦合得到的叶栅振动频率与非耦合自振频率相比均有所下降;振动位移-时间曲线在不同振动折合频率下有显著差别。在气固耦合情况下叶栅振动规律及其稳定性与非耦合情形差异较大,因此研究叶栅振动稳定性应当考虑气动/结构的耦合。  相似文献   

18.
振幅控制是半球谐振陀螺正常工作的基础,同时振幅控制的稳定性也直接影响陀螺的性能指标.针对半球谐振陀螺振幅控制问题开展研究.首先,推导了驱动力与陀螺振动幅度的传递函数,建立了振幅控制的被控对象模型;其次,提出了一种半球谐振陀螺的起振方法;然后根据已有研究设计了一种半球谐振陀螺振幅控制回路方案,并推导出振幅控制回路的闭环传...  相似文献   

19.
系统在达到稳态运动前通常要经历瞬态振动过程。瞬态振动对系统的影响是不可忽略的。在这个过程中作用于系统的激振力频率实际上是由零开始增加到某一工作频率。当激振力频率接近或超过系统的临界频率。系统发生共振,同时振幅达到峰值,并且此共振振幅通常要比系统的稳态振幅大的多。考虑到上述问题。文中分析了两种通过调制激振频率来实现降低临界振幅的方法,即让激振频率按单调线性增加或者分段线性增加到系统工作频率,通过系统相位的调制来实现减振。数值仿真结果表明上述方法能有效地降低临界振幅。同时上述方法工程实际应用中易于实现。  相似文献   

20.
声表面波(SAW)器件以其优良的性能广泛应用于雷达、通讯和日常用品等领域。然而,随着器件工作频率的不断升高,温度对器件频率稳定性的影响也越来越严重。因此,研究声表面波器件的温度效应,并在变温情况下保持SAW器件的频率稳定性至关重要。本文采用增量型的拉格朗日方程分析受温度影响的声表面波频率漂移问题。用频率-温度系数(TCF)作为评价频率-温度行为的标准。设计了一个具有温度补偿层的双层SAW谐振器模型,降低了器件的频率-温度系数。通过尺寸优化,LiNbO3-AlN结构的SAW谐振器在25℃(参考温度)下的频率温度系数TCF接近0ppm/℃。SAW谐振器的波长为4μm,谐振频率为1214.9MHz。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号