首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在应用系统的牵引及光学器件技术的推动下,工程化光纤陀螺朝着小型化、轻量化、高精度方向发展,设计了一种基于新型超细径(60/100)光纤制作的高精度光纤陀螺。相比于传统细径保偏光纤,新型超细径光纤可增加光纤的抗弯曲程度,也可使光纤环圈的绕制半径减少;同时,由于光纤变细,光纤环厚度减小,当环境温度改变时,内外层光纤温度差减小,有利于改善光纤陀螺环圈全温性能,提高光纤陀螺温度特性。首先研究了新型超细径光纤纤芯、包层结构设计,在此基础上为针对性提高涂覆胶体、绕环胶体材料的可靠性,建立了胶体材料性能随时间退化的模型;随后,基于上述新型光纤和小型化宽谱ASE光源,成功搭建了高精度光纤陀螺仪样机,陀螺整机尺寸为70 mm×70 mm×35 mm,陀螺测试零偏稳定性可达0.007°/h,可以满足陀螺小型化、轻量化、高精度需求。  相似文献   

2.
应力和温度是影响光纤陀螺特性的两个重要因数,环圈骨架是它们对光纤环施加影响的载体。本试验所制作的4J32芯轴式环圈骨架具有良好的热对称结构,低的热导率,以及几乎与光纤纤芯一致的热膨胀系数,所以它不仅可以降低光纤环轴向温度梯度,减小光纤环整体的温度梯度变化率,而且也能有效地减小环圈骨架和光纤环之间因热膨胀不一致导致的热应力对陀螺的影响。通过理论和有限元分析,结合多个光纤环样本的试验,可以看到:4J32芯轴式环圈骨架相对铝材料的骨架,其对陀螺的整体性能有将近一倍的改善作用。  相似文献   

3.
光纤陀螺用于敏感载体旋转角速率,是惯性导航系统的核心传感器之一。未来军用及民用领域对小体积、低成本的光纤陀螺需求巨大。利用光子集成芯片代替传统光纤分立器件,借助集成光学光刻工艺大规模批量生产的优势,降低生产成本,提高出货量,是光纤陀螺发展的重要方向。因此,在充分考虑目前国内微纳加工水平基础上,提出了一种工艺实现相对简单、可快速工程化的硅基光子集成芯片光纤陀螺设计方案。基于开环光纤陀螺架构,设计并加工了硅基光子芯片,实现了陀螺全部无源器件的片上集成,光子芯片尺寸约4 mm×3 mm;设计加工了四通道超细径保偏光纤阵列,实现波导与光纤多个耦合点的一次对准,大幅提高耦合封装效率;实现了光子集成芯片光纤陀螺样机25°C时零偏稳定性达到0.2°/h,性能优于相同结构的传统全光纤器件光纤陀螺。  相似文献   

4.
光子晶体光纤陀螺技术是解决光纤陀螺空间辐照及热漂移问题的重要技术途径,其中光子晶体光纤环是影响光纤陀螺性能的关键。仿真分析了光子晶体光纤的双折射与结构设计的关系,并计算了光纤的双折射和光纤环绕制过程引入的附加双折射的温度灵敏度,利用白光干涉仪,对光子晶体光纤环和普通的保偏光纤环进行了对比测试分析。试验结果表明,光子晶体光纤环具有较低的偏振特性温度灵敏度,双折射温度系数比普通保偏光纤低接近1个量级,引起的陀螺偏振误差也比普通保偏光纤环小1倍左右。试验结果验证了理论分析的正确性。  相似文献   

5.
为了提高光纤陀螺的抗辐照性能,满足空间应用的各种需要,对光纤陀螺光电器件进行了大量的辐射试验,尤其是对光纤陀螺的敏感器件-保偏光纤环进行了深入分析,采用光褪色心的方案,即向保偏光纤环中注入大功率激光,通过退色心的方法降低由于辐射而引起的光纤损耗的增加,从而增加了保偏光纤环的抗辐照性能。在此基础上,在光纤陀螺重量增加不大的前提下,提出了光纤陀螺主动抗辐射方案。试验表明该方案能够有效的提高光纤陀螺的抗辐射性能,能大大提高空间应用光纤陀螺的可靠性和使用寿命,能够起到抗辐照的作用。  相似文献   

6.
针对高精度光纤陀螺的温度敏感性问题,重点研究了光纤陀螺用保偏光纤温度性能。利用具有高空间分辨率的脉冲预泵浦光时域分析技术,测量不同温度点光纤的长度变化量,再根据光纤长度随温度的变化量与折射率温度系数的关系,给出光纤的折射率温度系数。试验共测量了8种国内和国外主流保偏光纤的折射率温度系数,测试结果显示:8种光纤折射率温度系数的最大值与最小值之间相差14%;某型国内保偏光纤与某型国外保偏光纤的折射率温度系数最小,量值基本相同。这种不同类型的保偏光纤折射率温度系数的差异与光纤纤芯的掺杂元素及掺杂浓度是直接相关的。该项测试技术可在基础材料层面提升光纤陀螺的温度性能;通过折射率温度系数测试,优选出更加适用于光纤环圈制作的保偏光纤,从而减小光纤陀螺温度Shupe效应误差,对于提高光纤陀螺的温度性能具有重要意义。  相似文献   

7.
为了解决光子晶体光纤陀螺中高阶模致非互易性问题,设计了一种用于高精度光纤陀螺的单模保偏光子晶体光纤。为获得光纤结构参数最优区域,基于全矢量有限元方法开展了光子晶体光纤模场分布、双折射特性和限制损耗与三个重要结构参数(归一化频率、空气填充比、大孔直径)的依赖关系数值仿真分析。以传统熊猫型保偏光纤特性为参照,确定了光子晶体光纤结构参数最优区域。采用优化的光子晶体光纤绕制了1500 m环圈并装配于陀螺,对陀螺进行了相应测试。未采用温度补偿措施下,陀螺全温零偏稳定性优于0.008 (°)/h (100 s, 1σ),表明这种光子晶体光纤适用于高精度光纤陀螺。  相似文献   

8.
针对克尔效应对布里渊光纤陀螺输出结果的影响,建立了基于方波调制的布里渊光纤陀螺克尔效应理论模型.分析表明,由克尔效应引起的陀螺误差不仅与光纤环内两相反方向光束的光强差有关,还依赖于两路泵浦光频率调制的幅度.通过适当调节两光束的频率调制幅度,可有效实现克尔效应误差的消除.该方法实验装置简单,对调制频率要求低,是消除布里渊光纤陀螺克尔效应的有效方法.  相似文献   

9.
小型化光纤陀螺的轴向磁场误差特性建模方法探讨   总被引:1,自引:0,他引:1  
小型化光纤陀螺的主要特点是光纤环径向尺寸逐步缩小,而轴向尺寸逐步增大,由此导致轴向磁场误差成为影响小型化光纤陀螺精度的重要因素之一。以小型化光纤陀螺轴向磁场误差特性为研究对象,依据光纤环中光纤的四极对称排列结构,提出轴向螺旋角展开分析法,利用Jones矩阵分别构建保偏型光纤陀螺及消偏型光纤陀螺的传输矩阵及轴向磁场误差模型,探讨光纤扭曲应力寄生圆双折射、轴向尺寸等因素与非互易性Faraday磁场相位误差的关系,得出光纤陀螺轴向磁场漂移误差的数学描述,以此为理论依据,探讨小型化光纤陀螺的轴向磁场误差因素,并提出相应的措施。  相似文献   

10.
通过深入研究八极绕法,实现了改善光纤陀螺温度性能的目的.在光纤陀螺Shupe误差数字离散公式的基础上,建立了采用八极绕法绕制的光纤环圈的有限元模型.对基于八极绕法的光纤环圈中的Shupe误差进行了以匝为单位的量化分析.根据建立的基于八极绕法的光纤环圈温度分布模型,分析了在相同的径向温度激励下八极绕法与四极对称绕法对陀螺性能的影响.结果表明:采用八极绕法绕制的光纤环圈与采用四级对称绕法绕制的光纤环圈相比,陀螺热致速率误差减少了80%,与实验结论相符.  相似文献   

11.
温度性能对光纤陀螺的精度影响至关重要。通过深入研究光纤环的十六极对称绕法,达到了改善光纤陀螺温度性能的目的。在对光纤陀螺由Shupe误差引起的热致旋转速率误差数学模型离散化的基础上,结合ANSYS有限元分析软件建立了精确到匝的光纤环十六极对称绕法有限元模型。根据所建立的光纤环温度分布模型,仿真分析比较了在光纤环四周施加变化的温度激励和分别在径向和轴向施加相同的恒定温度激励下,十六极对称绕法与四极和八极对称绕法绕制的光纤陀螺的温度性能。仿真实验结果显示:由十六极对称绕法绕制的光纤陀螺的热致旋转速率误差要低于四极和八极对称绕法1~2个数量级,这对十六极对称绕法在高精度光纤陀螺中的应用具有重要意义。  相似文献   

12.
光纤陀螺在随机误差方面表现出极佳的性能优势,并不断向超高精度方向发展。结合所在研发团队近几年的最新研究成果,分析了高精度光纤陀螺及惯导系统的发展现状。重点突破了超高精度光纤陀螺的结构设计与仿真、超长细径大直径精密环圈设计、误差抑制与标度提升以及陀螺极限精度测试等关键技术,研制的高精度光纤陀螺Allan方差探底值测试精度达到0.000005°/h。同时,介绍了平台旋转调制与载体角运动隔离、热/磁引起的航向效应误差抑制及残差补偿、高精度重力场误差模型构建与补偿等系统技术。首次开展了水下长航时自主导航试验,验证了舰船长航时光纤陀螺惯导系统技术的可行性和优势。最后对高精度光纤陀螺及惯导系统未来发展进行了展望。  相似文献   

13.
提出了一种内层空气孔环含有五个空气孔的新型高双折射光子晶体光纤结构;采用全矢量有限元法进行分析,研究了该光子晶体光纤两正交偏振模的有效折射率和双折射,分别给出了该五角芯型保偏光子晶体光纤双折射随输入光波长和大空气孔半径的变化曲线.分析结果表明:该五角芯型保偏光子晶体光纤的双折射很易达到i0-3量级甚至更高,比传统保偏光纤的双折射至少高出一个数量级,合理设计光纤结构参数,该保偏光纤的双折射在1550 nm处可以达到6.5×10-3以上,甚至更高,适合应用于偏振特性及稳定性要求都较高的实际光纤传感系统,例如光纤陀螺.  相似文献   

14.
基于漂移布朗运动的光纤陀螺加速贮存寿命评估   总被引:3,自引:0,他引:3  
众多"长期贮存,一次使用"的军事应用需求决定了光纤陀螺的贮存寿命指标的重要性,为此针对在贮存期内具有长寿命、高可靠性特点的光纤陀螺,实施加速贮存退化试验,并采用基于漂移布朗运动的方法,对光纤陀螺的贮存寿命与可靠性进行评估.依据光纤陀螺的贮存故障模式影响及危害性分析结果,确定了加速模型,并结合线性漂移布朗运动的特点,建立了光纤陀螺可靠性评估模型.利用加速贮存退化试验的试验数据对光纤陀螺贮存寿命进行评估,得到了评估结果,从而验证了方法的适用性.  相似文献   

15.
由于角振动台的振动频率有限,无法实现光纤陀螺的高带宽测试。提出了基于Faraday效应的光纤陀螺频率特性评估方法,采用正弦电流激励下的Faraday相位差等效Sagnac相位差,解决了激励信号输出频率有限的问题。根据光纤中的Faraday效应原理,分析了该评估方法与光纤陀螺角振动台测试方法的等效性;搭建了评估系统,使用该评估系统来模拟某型号光纤陀螺的信号处理过程,进行等效评估实验,得到了等效评估的光纤陀螺闭环带宽为9 kHz,实现了高带宽光纤陀螺的频率特性评估测试,为改善光纤陀螺的动态特性提供了有效的验证平台。  相似文献   

16.
光纤陀螺加速退化试验的可行性   总被引:1,自引:1,他引:0  
以可靠性试验技术为基础,对加速退化试验方法在光纤陀螺产品中实施的可行性进行了探索研究。对光纤陀螺所用器件在长期使用条件下性能变化及其对陀螺整机性能的影响进行了分析,阐述了光纤陀螺性能退化存在的可能性,并通过光纤陀螺长期使用实验数据进行验证,得出了光纤陀螺具有性能退化特性的结论。采用可靠性摸底试验方法对光纤陀螺性能退化在温度环境应力下的可加速性进行了探索,通过温度加速应力下光纤陀螺实际工作性能数据分析得出其性能退化具有加速性,对光纤陀螺实施加速退化试验可行。  相似文献   

17.
针对谐振式光纤陀螺易受背向散射噪声影响,且温度适应性较差的问题,提出了一种基于频差四态调制的谐振式光纤陀螺方案。该方案利用双闭环反馈结构,综合使用三角波相位调制和声光移频器的大频差调制,有效地抑制了背向散射噪声,提高了检测精度。同时,通过在声光移频器产生的大频差中引入补偿项进行温度补偿,改善了温度适应性。在搭建样机进行对比测试实验后,实验结果表明,四态调制方案可以将陀螺室温环境下的零偏稳定性提升51.5%;变温环境下的零偏稳定性提升69.6%。可见,基于频差四态调制的方案能有效提高谐振式光纤陀螺抑制背向散射噪声的能力,并能改善陀螺的温度适应性。  相似文献   

18.
光强外调制法抑制相对强度噪声   总被引:1,自引:0,他引:1  
针对高精度光纤陀螺超荧光光纤光源的相对强度噪声(RIN),阐述了光强外调制法抑制RIN系统构成。系统利用集成光学强度调制器及其反馈控制回路将光纤光源的强度变化作为调制信号,通过负反馈消除光源的RIN。文中给出了反馈回路中增益非平坦型带通滤波器的实现方法。实验结果表明,在10kHz~800kHz范围内,光强外调制法使单位带宽内信噪比改善了15~5dB。  相似文献   

19.
在实际应用中,陀螺动态范围一般要求在±100rad/s量级。为了达到如此大的动态范围,商用I-FOG普遍采用闭环工作方式。尽管RAI-FOG的精度比I-FOG高,可是动态范围小,因此需要闭环工作以实现大的动态范围。然而,由于RAI-FOG中有源再入式光纤萨格奈特环的光波循环再入干涉累加的过程远比I-FOG的普通光纤萨格奈特环中简单的双向光波干涉过程复杂,迄今为止,如何实现RAI-FOG的闭环工作仍是尚待解决的关键问题。本文研究了RAI-FOG的闭环原理和论证了利用方波调制阶梯波反馈方案实现有源再入式光纤陀螺闭环工作的可行性。设计、制作并调试成功了实现闭环有源再入式光纤陀螺的数字电路,建立了光纤环长为200m的闭环有源再入式光纤陀螺的实验系统。并利用闭环有源再入式光纤陀螺实验系统实现了0.67°/h的传感精度,比相同实验条件下的闭环干涉式光纤陀螺的精度提升了3倍。  相似文献   

20.
埋入式光纤传感器中,光纤与复合材料之间的相互作用会影响整个结构的力学性能。根据材料表界面学知识,光纤埋入复合材料中,与复合材料结构形成界面,该界面对复合材料的性能产生影响,因此光纤与复合材料之间形成的界面强度的研究意义重大。为了从本质上研究光纤埋入复合材料后对复合材料结构产生的影响,可采用单丝模型法等微观力学方法对光纤与复合材料之间形成界面的强度进行研究。根据理论,界面的剪切强度与光纤自身的拉伸强度有关,因此首先需要对光纤的力学性能进行研究。研究时探讨了两种试验方法,第一种为将光纤两端埋入环氧树脂槽的方法,采用此试验方法可得到光纤的弹性模量约为15GPa,第二种为缠绕的方法。并自制了小型拉伸试验机,在此试验机上进行大量拉伸试验,得到光纤拉伸强度为4.07GPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号