首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The purpose of this note is to define tri-momentum maps for certain manifolds with an Sp(1)n-action. We exhibit many interesting examples of such spaces using quaternions. We show how these maps can be used to reduce such manifolds to ones with fewer symmetries. The images of such maps for quaternionic flag manifolds, which are defined using the Dieudonné determinant, resemble the polytopes from the complex case.  相似文献   

3.
After a brief review on the basic notions and the principal results concerning the Jacobi manifolds, the relationship between homogeneous Poisson manifolds and conformal Jacobi manifolds, and also the compatible Jacobi manifolds, we give a generalization of some of these results needed for the contents of this paper. We introduce the notion of Jacobi–Nijenhuis structure and we study the relation between Jacobi–Nijenhuis manifolds and homogeneous Poisson–Nijenhuis manifolds. We present a local classification of homogeneous Poisson–Nijenhuis manifolds and we establish some local models of Jacobi–Nijenhuis manifolds.  相似文献   

4.
5.
The aim of this paper is the study of three-dimensional Lorentzian manifolds whose Ricci tensor has three equal constant eigenvalues, whose associated eigenspace is two-dimensional. A complete local classification of this class of curvature homogeneous manifolds is presented. It turns out that, if the eigenvalue is zero, these are exactly the curvature homogeneous manifolds modelled on an indecomposable, non-irreducible Lorentzian symmetric space, which were first studied in Cahen etaal. (1990), and the techniques presented in this paper can therefore be applied to obtain a complete (local) classification of these manifolds, and to construct a number of new examples of such manifolds.  相似文献   

6.
We present a systematic calculation of the volumes of compact manifolds which appear in physics: spheres, projective spaces, group manifolds and generalized flag manifolds. In each case we state what we believe is the most natural scale or normalization of the manifold, that is, the generalization of the unit radius condition for spheres. For this aim we first describe the manifold with some parameters, set up a metric, which induces a volume element, and perform the integration for the adequate range of the parameters; in most cases our manifolds will be either spheres or (twisted) products of spheres, or quotients of spheres (homogeneous spaces).Our results should be useful in several physical instances, as instanton calculations, propagators in curved spaces, sigma models, geometric scattering in homogeneous manifolds, density matrices for entangled states, etc. Some flag manifolds have also appeared recently as exceptional holonomy manifolds; the volumes of compact Einstein manifolds appear in string theory.  相似文献   

7.
李清都  谭宇玲  杨芳艳 《物理学报》2011,60(3):30206-030206
非线性系统的二维流形通常具有复杂几何结构和丰富动力学信息,因此在流形计算与可视化时存在大量的不可避免的数值计算.因此,如何高效地完成这些计算就成了关键问题.鉴于当今计算机的异构发展趋势(包含多核CPU和通用GPU),本文在兼顾精度和通用性的基础上,提出了适用于新一代计算平台的快速流形计算方法.本算法将计算任务分为轨道延伸和三角形生成两部分,前者运算量大而单一适合GPU完成,后者运算量小而复杂适合CPU执行.通过对Lorenz系统原点稳定流形的计算,表明本算法能充分发挥异构平台的综合性能,可大幅度提高计算速 关键词: 不稳定流形 流形计算 异构计算 Lorenz系统  相似文献   

8.
In this paper we outline some aspects of nonabelian gauged linear sigma models. First, we review how partial flag manifolds (generalizing Grassmannians) are described physically by nonabelian gauged linear sigma models, paying attention to realizations of tangent bundles and other aspects pertinent to (0, 2) models. Second, we review constructions of Calabi–Yau complete intersections within such flag manifolds, and properties of the gauged linear sigma models. We discuss a number of examples of nonabelian GLSMs in which the Kähler phases are not birational, and in which at least one phase is realized in some fashion other than as a complete intersection, extending previous work of Hori–Tong. We also review an example of an abelian GLSM exhibiting the same phenomenon. We tentatively identify the mathematical relationship between such non-birational phases, as examples of Kuznetsov’s homological projective duality. Finally, we discuss linear sigma model moduli spaces in these gauged linear sigma models. We argue that the moduli spaces being realized physically by these GLSMs are precisely Quot and hyperquot schemes, as one would expect mathematically.  相似文献   

9.
We formulate and discuss a reduction theorem for Poisson pencils associated with a class of integrable systems, defined on bi-Hamiltonian manifolds, recently studied by Gel'fand and Zakharevich. The reduction procedure is suggested by the bi-Hamiltonian approach to the separation of variables problem.  相似文献   

10.
We present a compared analysis of some properties of 3-Sasakian and 3-cosymplectic manifolds. We construct a canonical connection on an almost 3-contact metric manifold which generalises the Tanaka–Webster connection of a contact metric manifold and we use this connection to show that a 3-Sasakian manifold does not admit any Darboux-like coordinate system. Moreover, we prove that any 3-cosymplectic manifold is Ricci-flat and admits a Darboux coordinate system if and only if it is flat.  相似文献   

11.
A Finslerian manifold is called a generalized Einstein manifold (GEM) if the Ricci directional curvature R(u,u) is independent of the direction. Let F0(M, gt) be a deformation of a compact n-dimensional Finslerian manifold preserving the volume of the unitary fibre bundle W(M). We prove that the critical points g0 F0(gt) of the integral I(gt) on W(M) of the Finslerian scalar curvature (and certain functions of the scalar curvature) define a GEM. We give an estimate of the eigenvalues of Laplacian Δ defined on W(M) operating on the functions coming from the base when (M, g) is of minima fibration with a constant scalar curvature H admitting a conformal infinitesimal deformation (CID). We obtain λ ≥ H/(n − 1) (Δf = λf). If M is simply connected and λ = H/(n − 1), then (M, g) is Riemannian and is isometric to an n-sphere. We first calculate, in the general case, the formula of the second variationals of the integral I (gt) for G = g0, then for a CID we show that for certain Finslerian manifolds, I″(g0) > 0. Applications to the gravitation and electromagnetism in general relativity are given. We prove that the spaces characterizing Einstein-Maxwell equations are GEMs.  相似文献   

12.
We give examples of Lorentz manifolds modelled on an indecomposable Lorentz symmetric space which are geodesically complete and not locally homogeneous.  相似文献   

13.
We discuss the relation of the coeffective cohomology of a symplectic manifold with the topology of the manifold. A bound for the coeffective numbers is obtained. The lower bound is got for compact Kähler manifolds, and the upper one for non-compact exact symplectic manifolds. A Nomizu's type theorem for the coeffective cohomology is proved. Finally, the behaviour of the coeffective cohomology under deformations is studied.  相似文献   

14.
We investigate numerically the stable and unstable manifolds of the hyperbolic manifolds of the phase space related to the resonances of quasi-integrable systems in the regime of validity of the Nekhoroshev and KAM theorems. Using a model of weakly interacting resonances we explain the qualitative features of these manifolds characterized by peculiar ‘flower-like’ structures. We detect different transitions in the topology of these manifolds related to the local rational approximations of the frequencies. We find numerically a correlation among these transitions and the speed of Arnold diffusion.  相似文献   

15.
16.
We discuss relations of Vafa's quantum cohomology with Floer's homology theory, introduce equivariant quantum cohomology, formulate some conjectures about its general properties and, on the basis of these conjectures, compute quantum cohomology algebras of the flag manifolds. The answer turns out to coincide with the algebra of regular functions on an invariant lagrangian variety of a Toda lattice.Supported by Alfred P. Sloan Foundation  相似文献   

17.
On any quaternionic manifold of dimension greater than 4 a class of plurisubharmonic functions (or, rather, sections of an appropriate line bundle) is introduced. Then a Monge-Ampère operator is defined. It is shown that it satisfies a version of the theorems of A. D. Alexandrov and Chern–Levine–Nirenberg. For more special classes of manifolds analogous results were previously obtained in Alesker (2003) [1] for the flat quaternionic space HnHn and in Alesker and Verbitsky (2006) [5] for hypercomplex manifolds. One of the new technical aspects of the present paper is the systematic use of the Baston differential operators, for which we also prove a new multiplicativity property.  相似文献   

18.
The aim of this paper is to describe some results concerning the geometry of Lorentzian manifolds admitting Killing spinors. We prove that there are imaginary Killing spinors on simply connected Lorentzian Einstein–Sasaki manifolds. In the Riemannian case, an odd-dimensional complete simply connected manifold (of dimension n≠7) is Einstein–Sasaki if and only if it admits a non-trivial Killing spinor to . The analogous result does not hold in the Lorentzian case. We give an example of a non-Einstein Lorentzian manifold admitting an imaginary Killing spinor. A Lorentzian manifold admitting a real Killing spinor is at least locally a codimension one warped product with a special warping function. The fiber of the warped product is either a Riemannian manifold with a real or imaginary Killing spinor or with a parallel spinor, or it again is a Lorentzian manifold with a real Killing spinor. Conversely, all warped products of that form admit real Killing spinors.  相似文献   

19.
We determine curvature properties of pseudosymmetric type of certain warped product manifolds, and in particular of generalized Robertson–Walker spacetimes, with Einsteinian or quasi-Einsteinian fibre.  相似文献   

20.
We present a computational method for determining the geometry of a class of three-dimensional invariant manifolds in non-autonomous (aperiodically time-dependent) dynamical systems. The presented approach can be also applied to analyse the geometry of 3D invariant manifolds in three-dimensional, time-dependent fluid flows. The invariance property of such manifolds requires that, at any fixed time, they are given by surfaces in R3. We focus on a class of manifolds whose instantaneous geometry is given by orientable surfaces embedded in R3. The presented technique can be employed, in particular, to compute codimension one (invariant) stable and unstable manifolds of hyperbolic trajectories in 3D non-autonomous dynamical systems which are crucial in the Lagrangian transport analysis. The same approach can also be used to determine evolution of an orientable ‘material surface’ in a fluid flow. These developments represent the first step towards a non-trivial 3D extension of the so-called lobe dynamics — a geometric, invariant-manifold-based framework which has been very successful in the analysis of Lagrangian transport in unsteady, two-dimensional fluid flows. In the developed algorithm, the instantaneous geometry of an invariant manifold is represented by an adaptively evolving triangular mesh with piecewise C2 interpolating functions. The method employs an automatic mesh refinement which is coupled with adaptive vertex redistribution. A variant of the advancing front technique is used for remeshing, whenever necessary. Such an approach allows for computationally efficient determination of highly convoluted, evolving geometry of codimension one invariant manifolds in unsteady three-dimensional flows. We show that the developed method is capable of providing detailed information on the evolving Lagrangian flow structure in three dimensions over long periods of time, which is crucial for a meaningful 3D transport analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号