首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Simple and reproducible spectrophotometric methods have been developed for determination of sertraline, fluoxetine, and venlafaxine in pharmaceutical preparations. The methods are based on the reactions between the studied drug substances and ion-pair agents (bromothymol blue, bromocresol green, or bromophenol blue) to produce yellow-colored ion-pair complexes in acidic buffers. After extracting in chloroform, the ion-pair complexes are spectrophotometrically determined at the optimum wavelength. Optimizations of the reaction conditions were carried out. Beer's law was obeyed within the concentration range from 1 to 15 microg/mL. The molar absorptivity, Sandell sensitivity, and detection and quantification limits were also determined. The developed methods were applied successfully for the determination of these drugs in some available commercial preparations. The results were compared statistically with those obtained from reported high-performance liquid chromatography methods.  相似文献   

6.
The method is based on the oxidation of L-ascorbic acid with potassium hexacyanoferrate (III). Excess of oxidant is determined spectrophotometrically by oxidation of phthalophenone to phenolphthalein in alkaline solution. Linear calibration graphs are obtained for 0–7 μg ml?1 ascorbic acid at 553 nm, with a detection limit of 0.1 μg ml?1. Sugars and other organic compounds do not interfere when present in moderate amounts.  相似文献   

7.
The present paper describes an effective and low-cost spectrophotometric method for the determination of mefenamic acid in its pure form and pharmaceutical preparations. The method is based on the charge-transfer complexation between mefenamic acid as an n-electron donor and chloranil as a π-acceptor to form a violet chromogen measured at 540 nm. Under the optimum conditions, a linear relationship with a good correlation coefficient (0.9996) was found between the absorbance and concentration of the studied drug in the range of 10–60 μg/mL. The optimal reaction conditions such as reagent concentration, heating time, and stability of the reaction product were determined. The limit of detection (LOD) was 2.16 μg/mL and the limit of quantifycation (LOQ) was 7.15 μg/mL. The method was successfully applied to the determination of mefenamic acid in pharmaceutical preparations without any interference from common excipients. The text was submitted by the author in English.  相似文献   

8.
Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of three histamine H1-antagonists drugs, e.g., chlorphenoxamine hydrochloride (CPX), diphenhydramine hydrochloride (DPH) and clemastine (CMT) in bulk and in their pharmaceutical formulations. The first method depend upon the reaction of molybdenum(V) thiocyanate ions (Method A) with the cited drugs to form stable ion-pair complexes which extractable with methylene chloride, the orange red color complex was determined colorimetrically at lambda(max) 470nm. The second method is based on the formation of an ion-association complex with alizarin red S as chromogenic reagents in acidic medium (Method B), which is extracted into chloroform. The complexes have a maximum absorbance at 425 and 426nm for (DPH or CMT) and CPX, respectively. Regression analysis of Beer-Lambert plots showed a good correlation in the concentration ranges of 5.0-40 and 5-70microgmL(-1) for molybdenum(V) thiocyanate (Method A) and alizarin red S (Method B), respectively. For more accurate analysis, Ringbom optimum concentration ranges were calculated. The molar absorptivity, Sandell sensitivity, detection and quantification limits were calculated. Applications of the procedure to the analysis of various pharmaceutical preparations gave reproducible and accurate results. Further, the validity of the procedure was confirmed by applying the standard addition technique and the results obtained in good agreement well with those obtained by the official method.  相似文献   

9.
An accurate fast spectrophotometric method for the determination of cysteine andN-acetyl-cysteine is presented, based on the oxidation of these amino acids by ferric ions in the presence of ferrozine, whereby a violet-coloured complex is formed which absorbs at 562 nm. The method was satisfactory for the determination of cysteine andN-acetylcysteine in samples within the range 0.02–6.00 gml–1. Effects of time, acidity, ferric ions, ferrozine, sodium perchlorate concentrations and the tolerance limit for other amino acids have been reported. The method was applied to the determination of cysteine in amino acids mixtures andN-acetylcysteine in pharmaceutical preparations.  相似文献   

10.
Emara KM  Askal HF  Saleh GA 《Talanta》1991,38(11):1219-1222
A simple, rapid and sensitive spectrophotometric procedure for the assay of tetracycline hydrochloride and oxytetracycline hydrochloride has been developed. 2,2-Diphenyl-l-picrylhydrazyl (DPH), an intensely violet-coloured stable free radical, is changed in colour on reaction with the antibiotics investigated. The decrease in the intensity of the violet colour is used to measure the concentration of the drug. All measurements are made at 520 nm on methanolic solutions of the drug and reagent, buffered at pH 6. Beer's law is obeyed in the concentration ranges 2.5-15 and 2.5-20 mug/ml for tetracycline and oxytetracycline respectively. The proposed method has been successfully applied to analysis of the bulk drugs and their pharmaceutical formulations.  相似文献   

11.
A sequential injection analysis (SIA) system is proposed for the determination of iron (II). Fe(II) was determined by SIA based on the reaction between 1,10-phenanthroline and iron (II), yielding an orange–red colour complex with absorption maximum at 512 nm. The method involved aspiration of 187 μl sample/standard zone followed by a zone of a reagent solution containing 140 μl of 7.8 × 10−4 mol l−1 1,10-phenanthroline into a carrier stream to be stacked inside a holding coil and flow reversed through a reaction coil to a detector. The optimum condition was evaluated and the calibration curve is linear over a range of 0.25 to 5.0 mg l−1 of Fe(II) with detection limit of 18 μg l−1. A sample throughput of 40 h−1 was established. This technique is found to be simple, accurate, reproducible and sensitive. The proposed method was successfully applied for the determination of total iron as Fe(II) in pharmaceutical products (multi-vitamin tablets) and is especially useful for the determination of iron (II) in tablets with lower iron (II) contents. The results were found to be in good agreement with the results obtained by manual UV/Vis spectrophotometry and flame atomic absorption spectrometry (FAAS) and with claimed values by the manufacturers.  相似文献   

12.
Khaled E 《Talanta》2008,75(5):1167-1174
A simple, rapid and accurate method for the spectrophotometric determination of terfenadine has been developed. The proposed method based on the charge-transfer reactions of terfenadine, as n-electron donor, with 7,7,8,8-tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid, p-CLA) as π-acceptors to give highly colored complexes. The experimental conditions such as reagent concentration, reaction solvent and time have been carefully optimized to achieve the highest sensitivity. Beer's law is obeyed over the concentration ranges of 3–72, 3–96, 12–168 and 24–240 μg mL−1 terfenadine using TCNQ, TCNE, DDQ and p-CLA, respectively, with correlation coefficients 0.9999, 0.9974, 0.9997 and 0.9979 and detection limits 0.3, 0.4, 2.6 and 12.3 μg mL−1, for the reagents in the same order. DDQ and p-CLA react spontaneously with terfenadine to give colored complexes that can be applied for the flow injection analysis of terfenadine in the concentration ranges 2.4–120 and 24–240 μg with correlation coefficients 0.9990 and 0.9985 and detection limits 0.8 and 2.7 μg for DDQ and p-CLA, respectively, in addition to the high sampling through output of 40 sample h−1.  相似文献   

13.
A new spectrophotometric method for determination of furosemide is described. The method is based on the reaction of furosemide with ferric chloride in pH range 5.2–6.2 and producing a red water-soluble (2 1) complex with maximum absorbance at 513 nm. By applying the methods of Sommer and Job involving non-equimolar solutions the conditional stability constant of the complex, at the optimum pH of 5.7, and ionic strength =0.1M, is found to be 106.5. Beer's law is obeyed up to 8 mmol/l furosemide concentration. The detection limit of the method is 0.03 mg/ml. The relative standard deviation (n=20) is 1.03% and relative error of the method is 0.5%. The proposed method was found to be suitable for the accurate and reproducible analysis of furosemide in tablets and ampoules, what is pointed by high recovery values 98.78–100.6% and low values of relative standard deviations 1.68–2.08%. The results obtained show that the method is applicable to routine analysis.  相似文献   

14.
Two simple and accurate methods are described for the determination of piroxicam and tenoxicam in their pharmaceutical preparations. The spectrophotometric method involves the oxidation of these drugs with potassium iodate in acid medium with the liberation of iodine and subsequent extraction with cyclohexane followed by measuring the absorbance at lambda=522 nm. Beer's law is obeyed in the concentration range of 0.05-1.1 and 0.05-0.6 mg x ml(-1) for piroxicam and tenoxicam, respectively. The apparent molar absorptivities of the resulting coloured products are found to be 2.7 x 10(3) and 2.5 x 10(3) l mol(-1) x cm(-1), whereas Sandell sensitivities are 0.012 and 0.013 g x cm(-2) for piroxicam and tenoxicam, respectively. The potentiometric method involves the direct titration of both drugs with N-bromosuccinimide in acid medium and the end point is determined potentiometrically using platinum indicator electrode. Piroxicam and tenoxicam can be determined quantitatively in the concentration range of 0.33-3.37 and 0.33-4.08 mg x ml(-1) for tenoxicam and piroxicam, respectively. The standard deviation and relative standard deviation values are found to be ranged from 0.05-0.07 and 0.37-0.98% and 0.025-0.078 and 0.25-1.2% for tenoxicam and piroxicam, respectively. The two methods are accurate within +/-1.0%. Optimum conditions affecting both methods are studied. The proposed methods are applied for the determination of the drugs in pure form and in commercial pharmaceutical preparations.  相似文献   

15.
Saha U  Sen AK  Das TK  Bhowal SK 《Talanta》1990,37(12):1193-1196
Uranyl acetate is proposed as a reagent for the spectrophotometric determination of the tetracycline group of antibiotics. The reagent forms orange-red 1:1 complexes with the drugs in N,N-dimethylformamide medium. The complexes show absorption maxima at 414, 406, 419, 405 and 402 nm for tetracycline hydrochloride (TCH), oxytetracycline hydrochloride (OTCH), chlortetracycline hydrochloride (CTCH), doxycycline hydrochloride (DCH) and methacycline hydrochloride (MCH), respectively. Beer's law is valid over the concentration ranges 0–115, 0–120, 0–125, 0–135 and 0–110 μg/ml for TCH, OTCH, CTCH, DCH and MCH, respectively.  相似文献   

16.
Conditions were established for the determination of ascorbic acid using phsophovanadotungstic acid as reagent. The method was applied to the determination of ascorbic acid in pure form, pharmaceutical preparations and fruit juices. The method is sensitive (2-24 micrograms ml-1 of ascorbic acid) and rapid and tolerates the presence of common ingredients usually found in fruit juices. The results obtained with the proposed method showed good agreement with those given by the standard method.  相似文献   

17.
A simple, rapid and sensitive spectrophotometric method for the assay of certain adrenergic drugs, [pyrocatechol (PC), levodopa (LD), methyldopa (MD) and dopamine (DP)] is described. The method involves the oxidation of o-dihydroxybenzene derivatives by K2CrO4 followed by oxidative coupling with sulfanilic acid (SPA), leading to the formation of a red or violet colored product having maximum absorbance at 490-495 nm for LD, MD and DP or at 560 nm for PC. This method has been successfully applied to the determination of LD, MD and DP in tablets and injections of pharmaceutical preparation. The common excipients do not interfere with the proposed method. A statistical comparison of these results with those of a reported method shows good agreement and indicates no significant difference in precision.  相似文献   

18.
A sensitive spectrophotometric method for the determination of iodine species like iodide, iodine, iodate and periodate is described. The method involves the oxidation of iodide to ICl(2)(-) in the presence of iodate and chloride in acidic medium. The formed ICl(2)(-) bleaches the dye methyl red. The decrease in the intensity of the colour of the dye is measured at 520 nm. Beer's law is obeyed in the concentration range 0-3.5 microg of iodide in an overall volume of 10 ml. The molar absorptivity of the colour system is 1.73 x 10(5) l mol(-1) cm(-1) with a correlation coefficient of -0.9997. The relative standard deviation is 3.6% (n=10) at 2 microg of iodide. The developed method can be applied to samples containing iodine, iodate and periodate by prereduction to iodide using Zn/H(+) or NH(2)NH(2)/H(+). The effect of interfering ions on the determination is described. The proposed method has been successfully applied for the determination of iodide and iodate in salt samples and iodine in pharmaceutical preparations.  相似文献   

19.
Two simple, rapid and sensitive spectrophotometric methods for the determination of catecholamine derivatives (pyrocatechol, dopamine, levodopa and methyldopa) are developed. The first method involves the oxidation of o-dihydroxybenzene derivatives by N-bromosuccinimide followed by oxidative coupling with isoniazid leading to the formation of a red-coloured products of maximum absorbance (lambda(max)=480-490 nm). The second method is based on the formation of green to blue complex (lambda(max)=635-660 nm) between o- dihydroxybenzene derivatives and sodium nitroprusside in the presence of hydroxylamine hydrochloride. All measurements of the two procedures are carried out in an alkaline medium at room temperature. The two methods are successfully applied for the determination of dopamine hydrochloride, levodopa and methyldopa in injections and tablets of pharmaceutical preparation. The common excipients used as additives in pharmaceuticals do not interfere in the proposed methods. The reliability of these methods are established by parallel determination with the reported and official methods.  相似文献   

20.
A simple and rapid, inexpensive spectrophotometric method was proposed for magnesium assay in pharmaceutical preparations by sequential injection analysis (SIA). The method is based on the reaction between o-cresolphthalein complexone (CPC) and Mg(II) in alkaline media, yielding a pink colored complex with absorption maximum at 570 nm. Since the formation constant between Ca-CPC and Mg-CPC is similar, initially a sample/standard solution was aspirated into the holding coil followed by a mixture of masking-buffer solutions. This was done because masking of calcium should be accomplished before Mg-CPC complexation. Then the reagent was introduced into the reaction coil to produce a colored complex, which is measured spectrophotometrically at 570 nm. In this way the interference of calcium was reduced. Furthermore, all the parameters that affect the reaction were evaluated. The calibration curve is linear over a range of 0-20 mg l−1 of Mg(II) with a detection limit of 0.24 mg l−1. A sample throughput of 80 samples per hour and relative standard deviation <2.0% were achieved. The proposed method was successfully applied for the assay of magnesium in three different compositions of pharmaceutical preparations (tablets). The results were found to be in good agreement with the manual flame atomic absorption spectrophotometry (FAAS) and UV-Vis spectrophotometry methods and with the claimed values by the manufactures. The t-test shows no significant difference at 95% confidence level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号