首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, nanosecond pulsed laser crystallization, dewetting and ablation of thin amorphous silicon films are investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 7 ns temporal width are irradiated on silicon film. Below the dewetting threshold, crystallization process happens after 400 ns laser irradiation in the spot central region. With the increasing of laser fluence, it is observed that the dewetting process does not conclude until 300 ns after the laser irradiation, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to solidification of transported matter at about 500 ns following the laser pulse exposure.  相似文献   

2.
3.
We have studied the breakup and subsequent fluid flow in very thin films of partially wetting liquid on solid substrates, using molecular dynamics simulations. The liquid is made of short chain molecules interacting with Lennard-Jones interactions, and the solid is modeled as a clean crystal lattice whose atoms have thermal oscillations. Films below a critical thickness are found to exhibit a spontaneous spinodal-like instability leading to dry patches, as predicted theoretically and observed in some experiments. Liquid withdrawing from a dry patch collects in a moving rim whose fluid dynamics is only partially in agreement with earlier predictions.  相似文献   

4.
5.
The growth of fingering patterns in dewetting nanofluids (colloidal solutions of thiol-passivated gold nanoparticles) has been followed in real time using contrast-enhanced video microscopy. The fingering instability on which we focus here arises from evaporatively driven nucleation and growth in a nanoscopically thin precursor solvent film behind the macroscopic contact line. We find that well-developed isotropic fingering structures only form for a narrow range of experimental parameters. Numerical simulations, based on a modification of the Monte Carlo approach introduced by Rabani et al. [Nature (London) 426, 271 (2003)10.1038/nature02087], reproduce the patterns we observe experimentally.  相似文献   

6.
When a nonvolatile liquid film dewets from a partly compatible liquid substrate, the advancing dewetting front leaves behind droplets formed through a Rayleigh instability mechanism at its rim. We have found that these droplets continue to move in the direction of the dewetting front for extended periods (of order one day) with an initial droplet velocity varying linearly with the droplet size, and a displacement varying logarithmically with time. We attribute this persistent motion to a transient surface tension gradient on the substrate liquid surface trailing the dewetting front.  相似文献   

7.
A prototypical problem in the study of wetting phenomena is that of a solid plunging into or being withdrawn from a liquid bath. In the latter, dewetting case, a critical speed exists above which a three-phase contact line is no longer sustainable and the solid can no longer remain dry. Instead, a liquid film is being deposited on the solid. Demonstrating this transition from a dry to a wetted solid to be of hydrodynamic origin, we provide the first theoretical explanation of a classical prediction due to Derjaguin and Levi: instability occurs when the outer, static meniscus approaches the shape corresponding to a perfectly wetting fluid. Our analysis investigates the conditions under which the highly curved contact line region can be matched to the static profile far away from it.  相似文献   

8.
We study the instability of a very thin liquid film resting on a uniformly stretched soft elastomeric substrate driven by van der Waals forces. A linear stability analysis shows that the critical fluctuation wavelength in the tensile direction is larger than those in the other directions. The magnitudes of the critical wavelengths are adjustable in the sense that they depend on the principal stretch of the substrate. For example, when the principal stretch of the substrate varies from 1.0 (unstretched) to 3.0, the range of the critical wavelength in the tensile direction increases by 7.0% while that normal to the tensile direction decreases by 8.7%. Therefore, the phenomenon may find potential applications in creating tunable topographically patterned surfaces with nano-to microscale features.  相似文献   

9.
《Comptes Rendus Physique》2013,14(7):578-589
Spontaneous dewetting of solid thin films proceeds by edge retraction of film edges and/or by heterogeneous void growth. Classical 1D and 2D continuous models of the evolution of a dewetting film, based on surface diffusion mechanisms, predict that in the long-time limit dewetting obeys universal scaling laws. In this paper, we review 1D and 2D predictions and recent experimental results. For this purpose, using Si(001)/SiO2 and Ge(001)/SiO2 single-crystalline thin films in different geometries, we have been able to compare theoretical predictions to experimental results obtained by combining in situ LEEM and ex situ AFM measurements. For dewetting from film edges, experimental results partially differ from continuous models predictions. More precisely, because of the crystallographic anisotropy: (i) the facetted edges remain stable during dewetting (they simply recede at constant shape) while poorly or un-facetted edges are unstable (they recede by finger formation); (ii) rim formation, induced by mass-conservation condition, proceeds in a layer-by-layer mode and is limited by 2D nucleation properties on the top of the rim; (iii) the island generation mechanism differs from the mass shedding behaviour predicted by 1D models. For dewetting mechanisms involving void growth, different behaviours are reported and discussed. For thin Si(001)/SiO2 films, the corners of the opening square-shaped voids lead to a local destabilisation of the growing voids. For thin Ge(001)/SiO2 films, the side of the voids invariably turns instable and forms tip dendrites whose branch density depends on the temperature and the initial film thickness. Finally, ultra-thin films, more sensitive to local fluctuations, dewet in a fractal geometry.  相似文献   

10.
《Comptes Rendus Physique》2013,14(7):553-563
We review some models for the dynamics of dewetting of ultra-thin solid films. We discuss the similarities and the differences between faceted and non-faceted systems. The faceting of the dewetting rim leads to corrections in the velocity of dewetting fronts both in flat and axisymmetric geometries. The faceting of the edge of the dewetting rim leads to a strong anisotropy of the dewetting instability. Faceting also induces novel dewetting regimes such as layer-by-layer dewetting, and monolayer dewetting.  相似文献   

11.
We use large-scale molecular dynamics simulations to model the dewetting of solid surfaces by partially wetting thin liquid films. As observed experimentally and in previous simulations, the films recede at an initially constant speed, creating a growing rim of liquid with a constant receding dynamic contact angle. Film recession is faster on the more poorly wetted surface to an extent that cannot be explained solely by the increase in the surface tension driving force. Furthermore, the rates of recession of the thinnest films are found to increase with decreasing film thickness. These results suggest not only that the mobility of the liquid molecules adjacent to the solid increases with decreasing solid-liquid interactions, but also that the mobility adjacent to the free surface of the film is higher than in the bulk, so that the average viscosity of the film decreases with thickness. Recent simulations of films with a wide range of solid-liquid interactions lend support to this view.  相似文献   

12.
A simple model is put forward which accounts for the occurrence of certain generic dewetting morphologies in thin liquid coatings. It demonstrates that, by taking into account the elastic properties of the coating, a morphological phase diagram may be derived which describes the observed structures of dewetting fronts. It is demonstrated that dewetting morphologies may also serve to determine nanoscale rheological properties of liquids.  相似文献   

13.
We study the inertial dewetting of water films (A) (thickness e) deposited on highly hydrophobic liquid substrates (B). On these ideal surfaces, thin films can be made which dewet at large velocities obeying under those conditions the Culick law for the bursting of soap films. The rim collecting the water film can become coupled to the surface waves characterized by a surface tension gamma(B) upstream of the rim (coated substrate) and gamma = gamma(B) downstream, where the water film has dried. Upon decreasing the thickness, we observe a sequence of two hydraulic shocks during the dewetting inducing gravity waves behind the rim, and capillary waves ahead.  相似文献   

14.
The molecular recoiling force stemming from nonequilibrium chain conformation was found to play a very important role in the dewetting stability of polymer thin films. Correct measurements and inclusion of this molecular force into thermodynamic consideration are crucial for analyzing dewetting phenomena and nanoscale polymer chain physics. This force was measured using a simple method based on contour relaxation at the incipient dewetting holes. The recoiling stress was found to increase dramatically with molecular weight and decreasing film thickness. The corresponding forces were calculated to be in the range from 9.0 to 28.2 mN/m, too large to be neglected when compared to the dispersive forces (approximately 10 mN/m) commonly operative in thin polymer films.  相似文献   

15.
Energetic considerations indicate that long-range Van der Waals forces stabilize thin polystyrene (PS) films against height fluctuations on silicon substrates. Nevertheless, we report here on the amplification of capillary waves of specific wavelengths for 15 nm thick PS films on silicon, ultimately leading to dewetting in a spinodal-like process. However, the temporal dependence of the wavelength of the growing instability does not agree with the classical spinodal dewetting mechanism. Therefore, this phenomenon is ascribed to the existence of structural forces resulting either from the restructuring of the films or from density variations within the films during annealing, in accordance with recent theoretical treatments. The process is shown not to be limited to polystyrene films, which indicates the generality of our findings.Received: 1 August 2003PACS: 68.15. + e Liquid thin films - 47.20.-k Hydrodynamic stability - 47.20.Ma Interfacial instability - 68.08.-p Liquid-solid interfaces  相似文献   

16.
This contribution summarizes the present understanding of dewetting focusing on three points that are either controversial or open. The first issue concerns the initial formation of holes, i.e. the film rupture. The second point concerns the unstable growth of holes, i.e. the transversal instability of the receding contact line. Finally, recent extensions towards dewetting on heterogeneous substrates are examined. In passing the long time evolution in dewetting and the coupling of dewetting with other effects are discussed.Received: 1 August 2003PACS: 68.15. + e Liquid thin films - 68.55.-a Thin film structure and morphology - 47.20.Ma Interfacial instability  相似文献   

17.
A soft bead (radius R b) is pressed with a force F against a hydrophobic glass plate through a water drop (“wet” JKR set-up). We observe with a fast camera the growth of the contact zone bridging the rubber bead to the glass. Depending on the approach velocity V, two regimes are observed : i) at large V a liquid film is squeezed at the interface and dewets by nucleation and growth of a dry contact; ii) at low velocities, the bead remains nearly spherical. As it comes into contact, the rubber bead spreads on the glass with a characteristic time (in the range of one millisecond) τ ≈ ηR b 2/F, where η is the liquid viscosity. The laws of spreading are interpreted by a balance of global mechanical and viscous forces. Received: 22 December 2002 / Accepted: 24 March 2003 / Published online: 29 April 2003 RID="a" ID="a"e-mail: brochard@curie.fr  相似文献   

18.
Ultrathin polymer films on non-wettable substrates display dynamic features which have been attributed to either viscoelastic or slip effects. Here we show that in the weak- and strong-slip regime, effects of viscoelastic relaxation are either absent or essentially indistinguishable from slip effects. Strong slip modifies the fastest unstable mode in a rupturing thin film, which questions the standard approach to reconstruct the effective interface potential from dewetting experiments.  相似文献   

19.
20.
We report on three key processes involving atomic step motion during the dewetting of thin solid films: (i) the growth of an isolated island nucleated far from a hole; (ii) the spreading of a monolayer rim; and (iii) the zipping of a monolayer island along a straight dewetting front. Kinetic Monte Carlo results are in good agreement with simple analytical models assuming diffusion-limited dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号