共查询到20条相似文献,搜索用时 15 毫秒
1.
Determination of trace elements in residual oil by high-resolution inductively coupled plasma mass spectrometry 总被引:2,自引:0,他引:2
Hualin Xie Kelong Huang Jinchun Liu Xidu Nie Liang Fu 《Analytical and bioanalytical chemistry》2009,393(8):2075-2080
An analytical method using high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous
determination of 20 elements, including Na, Mg, Al, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Mo, Cd, Sn, Sb, Ba, and Pb
elements, in residual oil was described. The sample was dissolved in HNO3 by microwave digestion, and then the above 20 elements in the solution were analyzed directly by HR-ICP-MS. Most of the spectral
interferences could be avoided by measuring in the high-resolution mode. The matrix effect caused by the sample-digesting
solution and corrected by Sc, Rh, and Bi as the internal standard elements was studied in detail. The optimum condition of
the determination was also tested and discussed. The result showed that the detection limits of the method were in the range
of 0.014 to 11.6 μg L−1; the relative standard deviation was less than 3.8% and recoveries in the samples were in the range of 88.4% to 108.0%. This
method can be used to determine the trace elements in residual oil with the features of accurate, rapid, and convenient determination. 相似文献
2.
膜去溶-ICP-MS法测定高纯Eu_2O_3中14种痕量稀土杂质 总被引:1,自引:0,他引:1
研究了不需基体分离,膜去溶-ICP-MS法直接测定高纯Eu2O3中的14种痕量稀土杂质的分析方法。讨论了Eu基体产生的多原子离子对被测元素的质谱干扰。使用膜去溶后,待测元素灵敏度提高3倍左右,EuO/Eu产率从去溶前的0.016%降低为0.0007%。建立了Tm的数学校正方程,通过膜去溶结合数学校正可将Eu基体对Tm干扰完全消除。14种稀土杂质的检出限和(∑RE)为70 ng/L,测定下限和(∑RE)为0.54μg/g。对6N高纯Eu2O3样品进行了分析,样品回收率为96%~109%,RSD小于10%。所建立的方法对Eu2O3标准样品的测定结果与国家标准方法测定结果相一致。 相似文献
3.
建立电感耦合等离子体-质谱(ICP-MS)法测定高纯硫粉中Si、P、V、Cr、Mn、Ni、Co、Cu、As、Zn、Zr、Cd、In、Sb、Te、Pb、Bi等17种痕量金属杂质含量的方法。样品用HClO4溶解后挥发硫基体,使样品中杂质元素得到富集,各杂质元素的方法检出限为0.1~50ng/g。方法加标回收率为83%~117%。各杂质元素均为10ng/mL的混合标准溶液平行7次测定的相对标准偏差均小于5%。该方法能够满足纯度为99.999%~99.9999%的高纯硫样品中杂质测定的需要。 相似文献
4.
建立了用电感耦合等离子体质谱仪(ICP-MS)测定高纯氧化钽中28种痕量杂质元素的方法。讨论了质谱干扰及接口效应,采用标准加入法消除基体效应。各元素的方法检出限为0.001~0.1μg/g,回收率为90%~115%,方法适用于纯度为99.999%的高纯氧化钽中痕量杂质元素的测定。 相似文献
6.
Determination of trace elements in granites by inductively coupled plasma mass spectrometry 总被引:66,自引:0,他引:66
Proposed is a simple and reliable method for the dissolution of granite and the determination of 38 elements by inductively coupled plasma mass spectrometry. One hundred milligrams of sample are digested with 1 ml of HF and 0.5 ml of HNO(3) in screw top PTFE-lined stainless steel bombs at 190 degrees C for 12 h. Insoluble residues are dissolved using 8 ml of 40% HNO(3) (v/v) heated to 110 degrees C for 3 h. Six granite standard reference materials (GSR-1, JG-2, G-2, NIM-G, SG-3, SG-1a) were studied. Analytical calibration was accomplished using aqueous standard solutions. Rhodium was used as an internal standard to correct for matrix effects and instrument drift. We report data for: Li, Be, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Mo, Cs, Ba, Hf, Ta, W, Pb, Th, U and 14 of the rare earth elements. The recoveries for most of these elements in granite ranged from 90 to 110%. 相似文献
7.
Shoji Kozuka Yukari Yokote Kazuhide Abe Masaru Hayashi Hideki Matsunaga 《Fresenius' Journal of Analytical Chemistry》1995,351(8):801-802
The determination of impurities in SrTiO3 by ICPMS was investigated. The sample was decomposed with hydrochloric and hydrofluoric acids in a PTFE pressure vessel. The internal standard method using Au was selected to eliminate an ion count suppression by the Sr and Ti matrix. Impurities at sub g/ml level in SrTiO3 were determined. The detection limits were in the range of 0.008 to 0.01 g/g. 相似文献
8.
Traces of cadmium and bismuth in high-purity zinc metal were determined by inductively coupled plasma mass spectrometry (ICP-MS) in combination with flow injection (FI) on-line matrix separation (FI-ICP-MS). The anion-exchange separation method of the potassium iodide (KI) system was applied to the separation of the analytes from the matrix zinc. The analytes, cadmium and bismuth, were adsorbed on the anion-exchange (BIO. RAD AG1-X8) mini-column (1.0 mm i.d.x 100 mm bed length), while the matrix zinc can be completely removed from the anion-exchange resin. The analytes were eluted by 2 mol/l HNO(3) and directly introduced into the ICP-MS. The detection limits (D.L.) obtained by using a single injection (350 microl) were 0.81 and 0.075 ng g(-1) for cadmium and bismuth, respectively. In the case of multi-injection concentration onto the anion-exchange mini-column (five injections 350 microl each), the detection limits could be improved to 0.16 and 0.014 ng g(-1) for cadmium and bismuth, respectively. The reproducibilities of the single injection and the multi-injection method were satisfactory with a relative standard deviation of less than 5% (at the 10 and 1 ng ml(-1) level for the single injection and the multi-injection method, respectively). The method was successfully applied to the determination of trace impurities in four samples of high-purity zinc metal (7 nines grade) and three standard reference materials of high-purity unalloyed zinc samples (from NIST). 相似文献
9.
Yasumasa Sayama Yutaka Hayashibe Masamitsu Fukuda 《Fresenius' Journal of Analytical Chemistry》1995,353(2):162-166
Traces of cadmium and bismuth in high-purity zinc metal were determined by inductively coupled plasma mass spectrometry (ICP-MS) in combination with flow injection (FI) on-line matrix separation (FI-ICP-MS). The anion-exchange separation method of the potassium iodide (KI) system was applied to the separation of the analytes from the matrix zinc. The analytes, cadmium and bismuth, were adsorbed on the anion-exchange (BIORAD AG1-X8) mini-column (1.0 mm i.d.× 100 mm bed length), while the matrix zinc can be completely removed from the anion-exchange resin. The analytes were eluted by 2 mol/l HNO3 and directly introduced into the ICP-MS. The detection limits (D.L.) obtained by using a single injection (350 l) were 0.81 and 0.075 ngg-1 for cadmium and bismuth, respectively. In the case of multi-injection concentration onto the anion-exchange mini-column (five injections 350 l each), the detection limits could be improved to 0.16 and 0.014 ngg-1 for cadmium and bismuth, respectively. The reproducibilities of the single injection and the multi-injection method were satisfactory with a relative standard deviation of less than 5% (at the 10 and 1 ngml-1 level for the single injection and the multi-injection method, respectively). The method was successfully applied to the determination of trace impurities in four samples of high-purity zinc metal (7 nines grade) and three standard reference materials of high-purity unalloyed zinc samples (from NIST). 相似文献
10.
11.
12.
Determination of trace elements in steel by laser ablation inductively coupled plasma mass spectrometry. 总被引:3,自引:0,他引:3
A rapid quantitative analysis of the trace elements in steel by laser ablation inductively coupled plasma mass spectrometry is described. The conditions for laser ablation and normalization methods to improve the analytical precision are given. The optimum conditions for laser ablation were achieved when the ion yield was a maximum at the focus position in the fixed Q pulse mode, and above the focus position in the Q-switched pulse mode. It was found that the fixed Q pulse mode was most suitable for the determination of trace metal elements in steel, and that the Q-switched pulse mode was most suitable for both non-metallic elements and elements with a high boiling-point. In order to improve the analytical precision for those elements with a strong background intensity, normalization methods with both the matrix ion, 57Fe+, and 38Ar+ are proposed. 相似文献
13.
建立了微波消解-内标法-标准加入-ICP-MS法测定高纯黄金中铝、砷、铋、铬、铁、铅、锑、硒、碲、铱等痕量元素的分析方法.从试样溶解方式、内标元素及同位素的选择、仪器检测模式的优化及降低基体抑制效应等方面进行优化.实验加标回收率为99.5% ~110%,相对标准偏差(RSD)为0.050% ~6.5%.实验的准确度和精... 相似文献
14.
This paper describes a rapid, accurate and precise method for the determination of trace Fe, Hf, Mn, Na, Si and Ti in high-purity zirconium dioxide (ZrO2) powders by inductively coupled plasma atomic emission spectrometry (ICP-AES). The samples were dissolved by a microwave-assisted digestion system. Four different digestion programs with various reagents were tested. It was found that using a mixture of sulfuric acid (H2SO4) and ammonium sulfate ((NH4)2SO4), the total sample dissolution time was 30 min, much shorter than that required for conventional digestion in an opening system. The determination of almost all of the target analytes suffered from spectral interferences, since Zr shows a line-rich atomic emission spectrometry. The wavelet transform (WT), a recently developed mathematical technique was applied to the correction of spectral interference, and more accurate and precise results were obtained, compared with traditional off-peak background correction procedure. Experimental work revealed that a high Zr concentration would result in a significant decrease in peak height of the analyte lines, which was corrected by standard addition method. The performance of the developed method was evaluated by using synthetic samples. The recoveries were in the range of 87-112% and relative standard deviation was within 1.1-3.4%. The detection limits (3σ) for Fe, Hf, Mn, Na, Si and Ti were found to be 1.2, 13.3, 1.0, 4.5, 5.8 and 2.0 μg g−1, respectively. The results showed that with the microwave-assisted digestion and the WT correction, the detection limits have improved by a factor of about 5 for Fe, 4 for Mn and Ti, 3 for Si, and 2 for Hf and Na, respectively, in comparison with conventional open-system digestion and off-peak correction. The proposed technique was applied to the analysis of trace elements above-mentioned in three types of ZrO2 powders. 相似文献
15.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied for the sensitive multi-element analysis
of traces and ultra-traces in geological samples. In order to prepare homogeneous targets the powdered geological samples
were melted together with a lithium-borate mixture (90% Li2B4O7, 10% LiBO2) in a muffle furnace at 1050 °C. The quantification of the analysis results was carried out using the BCR-2G and BM standard
reference material (SRM). The experimentally determined relative sensitivity coefficients (RSC) for both SRMs vary between
0.2 and 3 for most of the elements, whereas the relative standard deviation (RSD) of the determination (N = 3) of the concentration
was 5–20%. The analysis results of LA-ICP-MS for various geological samples are in agreement with those of other methods.
Received 31 March 1999 / Revised: 26 May 1999 / Accepted: 31 May 1999 相似文献
16.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied for the sensitive multi-element analysis of traces and ultra-traces in geological samples. In order to prepare homogeneous targets the powdered geological samples were melted together with a lithium-borate mixture (90% Li2B4O7, 10% LiBO2) in a muffle furnace at 1050?°C. The quantification of the analysis results was carried out using the BCR-2G and BM standard reference material (SRM). The experimentally determined relative sensitivity coefficients (RSC) for both SRMs vary between 0.2 and 3 for most of the elements, whereas the relative standard deviation (RSD) of the determination (N = 3) of the concentration was 5–20%. The analysis results of LA-ICP-MS for various geological samples are in agreement with those of other methods. 相似文献
17.
Determination of cosmochemically volatile trace elements in chondritic meteorites by inductively coupled plasma mass spectrometry 总被引:1,自引:0,他引:1
We have developed a method for the quantification of 14 cosmochemically moderately volatile to highly volatile trace elements (Cu, Zn, Ga, Se, Rb, Ag, Cd, In, Sn, Sb, Te, Cs, Tl, and Bi) in chondritic meteorites by ICPMS. The method utilizes internal standardization via addition of Be, Rh, Re, and U and multiple single point matrix-matched external calibrations with Allende standard reference meteorite to provide drift corrected calibration within an ICPMS procedure. We have demonstrated our method's precision and accuracy by performing replicate dissolutions and analyses of 0.05-0.10 g samples of a homogenized sample of the CM2 Murchison meteorite and compared our results to literature values for this meteorite. Our procedure allows for a rapid and accurate determination of the cosmochemically important VTEs in chondritic meteorites providing the means for an even more comprehensive elemental analysis of a single sample of chondritic material. 相似文献
18.
A method for the determination of ultratrace amounts of boron in high-purity tantalum materials [tantalum metal, tantalum(v) oxide, tantalum pentachloride and tantalum pentaethoxide] is described. On-line anion-exchange matrix separation combined with inductively coupled plasma mass spectrometry (ICP-MS) was employed for the determination of boron at the ng g(-1) level. Tantalum materials were dissolved using HF and/or HNO3 prior to analysis. The loss of boron in the sample preparation procedure was examined as the recovery of boron by adding a definite amount of boron to each tantalum material sample before decomposition, and it was almost negligible. In an anion-exchange method using 0.1 M HF carrier solution, tantalum and boron in the sample solution were first adsorbed on a strongly basic anion-exchange resin. Next, boron was eluted from the resin with 5 M HCl, whereas tantalum was retained strongly adsorbed. The eluted boron was introduced directly into the ICP-MS system for quantitative analysis at m/z 10 and 11. Because of the long elution time of boron, the transient signal was integrated in the time range 70-300 s on the chromatogram. Although the elution of boron in the time range was ca. 40% of total boron in the sample solution injected, the determination limits (10sigma) obtained by the present method were 30, 25, 15 and 13 ng g(-1) for tantalum metal, tantalum(v) oxide, tantalum pentachloride and tantalum pentaethoxide, respectively. The method was applied to the determination of boron in commercially available high-purity tantalum materials and it was found that the concentrations of boron were in the ng g(-1)-microg g(-1) range. 相似文献
19.
20.
Yong-Jae Kim Chang-Kyu Kim Cheol-Su Kim Ju-Yong Yun Byung-Hwan Rho 《Journal of Radioanalytical and Nuclear Chemistry》1999,240(2):613-618
A time-saving and accurate technique for determining226Ra in groundwater and soil was examined, using high-resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS). The
technique was applied to the determination of226Ra in groundwater and soil samples and compared with the conventional liquid scintillation counting method. This technique
was capable of completing226Ra counting within 3 minutes, without the in-growth period to allow radon and its progeny to achieve secular equilibrium with
the parent226Ra. The detection limits of HR-ICP-MS for226Ra in groundwater and soil were 0.19 mBq·1−1 and 0.75 Bq·kg−1, respectively, which were about 10 times lower than that of the liquid scintillation counter. The results obtained from HR-ICP-MS
in groundwater and soil were in accordance with those of LSC within a relative error of about 13%. 相似文献