首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have used quasielastic neutron scattering to probe the solid-state ligand dynamics in the coordination polymer Mn[N(CN)(2)](2)(pyz) [pyz = pyrazine] which has double-interpenetrating 3D lattices. A reversible structural phase transition occurs at 410 K as shown by neutron spectroscopy and differential scanning calorimetry. The origin of this transition is linked to rotational dynamics associated with the bridging pyz ligands. At 425 K, the pyrazine ring motion can be solely regarded as a 180 degrees reorientational jump about the axis defined by the Mn-N coordinative bonds, occurring with a correlation time of approximately 70 ps. This model can be extended to the 200-410 K temperature region using high-resolution backscattering spectroscopy to measure an identical motion on the time scale of nanoseconds with an activation energy of 24 +/- 2 kJ mol(-1). In contrast, no quasielastic scattering is seen for the 2D layered variant beta-Cu[N(CN)(2)](2)(pyz), owing to its more compact layer packing motif. Importantly, this work represents the very first study of solid-state rotational dynamics in an interpenetrating lattice structure.  相似文献   

2.
Cd(C(4)H(4)N(2))(H(2)O)(2)MoO(2)F(4) (C(4)H(4)N(2) = pyrazine, pyz) was synthesized via hydro(solvato)thermal methods and characterized by single-crystal X-ray diffraction methods (P3(2)()21, no. 154, Z = 3, a = 7.4328(7) A, c = 16.376(2) A). Both of the known M(pyz)(H(2)O)(2)MoO(2)F(4) (M = Zn, Cd) compounds are comprised of trans-M(pyz)(2)(OH(2))(2)F(2) and cis-MoO(2)F(4) octahedra that share fluoride vertices to form helical chains along the 3-fold screw axes. Individual chains are bridged to six symmetry-equivalent helices through metal-pyrazine and OH(2)...F and OH(2)...O hydrogen bonds. Structural comparisons of similar oxyfluoride chains demonstrate that they can be varied from linear to helical through (1) the replacement of pyridine or pyrazine by H(2)O molecules and (2) the substitution of cis-directing MoO(2)F(4)(2-) anions in place of trans-directing WO(2)F(4)(2-) or TiF(6)(2-) anions. Infrared absorption (IR) measurements for M = Cd show two distinct O-H stretches corresponding to hydrogen-bonded O-H...F and O-H...O groups. Contrastingly for M = Zn, IR measurements exhibit O-H stretches for averaged hydrogen-bonded O-H...(O/F) groups, free (unbound) O-H groups, and higher energy Mo-F stretches. The IR data suggest a small fraction of the O-H...F hydrogen bonds are broken in the M = Zn analogue as a result of the racemic twinning. Both compounds exhibit nonlinear optical behavior, with second harmonic generation (SHG) intensities, relative to SiO(2), of approximately 0.25 ( = 0.28 pm/V) for the racemically twinned Zn(pyz)(H(2)O)(2)MoO(2)F(4) and approximately 1.0 ( = 0.55 pm/V) for the enantiopure Cd(pyz)(H(2)O)(2)MoO(2)F(4).  相似文献   

3.
We herein report an unusual CO(2) adsorption behavior in a fluoro-functionalized MOF {[Zn(SiF(6))(pyz)(2)]·2MeOH}(n) (1) with a 1D channel system, which is made up of pyrazine and SiF(6)(2-) moieties. Surprisingly, desolvated 1 (1') adsorbs higher amounts of CO(2) at 298 K than at 195 K, which is in contrast to the usual trend. Combined Raman spectroscopic and theoretical studies reveal that slanted pyrazine rings in 1' with an angle of 17.2° with respect to the (200) Zn(ii)-Si plane at low temperature block the channel windows and thus reduce the uptake amount.  相似文献   

4.
4,4'-联吡啶、吡嗪和咪唑桥联铜、镍配合物的合成和磁性   总被引:4,自引:1,他引:3  
合成了六个含氮杂环桥联配合物: [Ni(salal)2(4,4'-bipy)]n、[Ni(Et-dtp)2(4,4'-bipy)]n、[Cu(acac)2(4,4'-bipy)]n、[Cu(TTA)2(pyz)]n、[Cu(TTa)(Im)]n和[Cu(Im)2]n, 用元素分析、IR、MS、ESR和热重分析对它们的结构和性质作了表征。吡嗪配合物的晶体结构显示, 吡嗪配位于拉伸八面体的轴向位置, 桥联Cu(TTA)2形成一维无限链状结构。变温磁化率表明, 4,4'-联吡啶和吡嗪配合物的磁性遵从Curie-Weiss定律, 分子内没有明显的磁交换作用。咪唑配合物中存在着较强的反铁磁性交换作用, 磁交换常数分别为-75和-107cm^-^1。对4,4'-联吡啶、吡嗪和咪唑传递磁交换的性质作了讨论。  相似文献   

5.
We report a systematic investigation of the temperature-dependent infrared vibrational spectra of a family of chemically related coordination polymer magnets based upon bridging bifluoride (HF(2)-) and terminal fluoride (F-) ligands in copper pyrazine complexes including Cu(HF(2))(pyz)(2)BF(4), Cu(HF(2))(pyz)(2)ClO(4), and CuF(2)(H(2)O)(2)(pyz). We compare our results with several one- and two-dimensional prototype materials including Cu(pyz)(NO(3))(2) and Cu(pyz)(2)(ClO(4))(2). Unusual low-temperature hydrogen bonding, local structural transitions associated with stronger low-temperature hydrogen bonding, and striking multiphonon effects that derive from coupling of an infrared-active fundamental with strong Raman-active modes of the pyrazine building-block molecule are observed. On the basis of the spectroscopic evidence, these interactions are ubiquitous to this family of coordination polymers and may work to stabilize long-range magnetic ordering at low temperature. Similar interactions are likely to be present in other molecule-based magnets.  相似文献   

6.
Four new [AuBr(2)(CN)(2)](-)-based coordination polymers, Zn(pyz)(NCMe)(2)[AuBr(2)(CN)(2)](2) (1; pyz = pyrazine), Co(pyz)[AuBr(2)(CN)(2)](2)·H(2)O (2) and [M(bipy)(2)(AuBr(2)(CN)(2))][(n)Bu(4)N][AuBr(2)(CN)(2)](2) (bipy = 4,4'-bipyridine), where M = Co (5) and Zn (6), were synthesized and three of them structurally characterized. 1 forms 1-D chains connected by pyz ligands while isostructural 5 and 6 form 3-D frameworks via [AuBr(2)(CN)(2)](-) and bipy linkers. Aqueous suspensions of 2, 5 and 6 or their precursors in situ (preferred) were heated hydrothermally to 125 °C, triggering the reductive elimination of bromine from the Au(III) centres, which yielded the [Au(CN)(2)](-)-based coordination polymers M(pyz)[Au(CN)(2)](2), where M = Zn (3) or Co (4) and Zn(bipy)[Au(CN)(2)][Au{Br(0.68)(CN)(0.32)}CN] (7), or a mixture of cyanoaurate(I)-containing products in the case of 5 and 6. The structural characterization of 3 revealed a [Au(CN)(2)](-)/pyz-based framework similar to previously reported Cu(pyz)[Au(CN)(2)](2), whereas 7 formed an intricate network consisting of individual 2-D networks held together by AuAu interactions and featuring the rare [AuBrCN](-) unit. The kinetics of the thermally-induced reductive elimination of Br(2) from K[AuBr(2)(CN)(2)] in 1-BuOH yielded a t(?) of approx. 10 min to 4 h from 98 to 68 °C, and activation parameters of ΔH(?) = 131(15) kJ mol(-1) and ΔS(?) = 14.97(4) kJ K(-1)mol(-1), indicating that the elimination of the halogen provides the highest barrier to activation.  相似文献   

7.
A tetragonal polymorph of [Ni(HF(2))(pyz)(2)]PF(6) (designated β) is isomorphic to its SbF(6)-congener at 295 K and features linear Ni-FHF-Ni pillars. Enhancements in the spin exchange (J(FHF) = 7.7 K), Néel temperature (T(N) = 7 K), and critical field (B(c) = 24 T) were found relative to monoclinic α-PF(6). DFT reveals that the HF(2)(-) bridges are significantly better mediators of magnetic exchange than pyz (J(pyz)), where J(FHF) ≈ 3J(pyz), thus leading to quasi-1D behavior. Spin density resides on all atoms of the HF(2)(-) bridge whereas N-donor atoms of the pyz ring bear most of the density.  相似文献   

8.
A microporous metal-organic framework [Cu(3)(ipO)(2)(pyz)(2)](n), (ipO = 2-hydroxyisophthalic acid, pyz = pyrazine) was synthesized via an in situ. ligand transformation reaction. The microporous framework displays helical arrays of ipo ligands holding the Cu atoms in 2D sheets, whilst the coordination of pyz molecules acts to arrange these sheets into a microporous 3D structure. Remarkable selective sorption behaviour (>5) for H(2) over N(2) is observed and explained with molecular dynamics simulations.  相似文献   

9.
A Ni(II)-based dimer structure, Ni2(dpa)2(pyz)(H2O)4 (dpa = 2,6-pyridine dicarboxylic acid dianion, pyz: pyrazine), has been prepared using hydrothermal synthesis and the solid-state magnetic properties have been evaluated. In the dimeric structure, the planar tridentate 2,6-pyridine dicarboxylic acid dianion coordinates to a Ni(II) ion in a meridional fashion and defines the equatorial plane of the complex. The fourth equatorial coordination site is then occupied by a pyrazine molecule that functions as a linear bidentate ligand bridging two Ni(II) complexes to form a dimer. The axial positions of each Ni(II) complex are occupied by two water molecules to form a distorted octahedral geometry. Susceptibility and magnetization measurements show that both intra-dimer and inter-dimer exchange interactions are weakly antiferromagnetic. The fitting of the magnetic data also indicates the existence of a large axial zero-field splitting term that contributes to the small magnetization even under high fields.  相似文献   

10.
The magnetic properties of Cu(2)(dca)(4)(2,5-me(2)pyz) have been reexamined. The extended structure of Cu(2)(dca)(4)(2,5-me(2)pyz) can be viewed in terms of Cu(2)(2,5-me(2)pyz)(4+) dimer units interconnected via mu(1,5)-dca ligands. The bulk magnetic susceptibility chi(T) and the isothermal M(H) of Cu(2)(dca)(4)(2,5-me(2)pyz) are shown to be well described by an isolated dimer model. This finding was confirmed by carrying out a spin dimer analysis based on tight-binding calculations, which shows that the 2,5-me(2)pyz ligand provides a substantial spin exchange interaction between the Cu(2+) ions while the dca ligands do not.  相似文献   

11.
A potential bridging triazole-based ligand, atrz (trans-4,4'-azo-1,2,4-triazole), is chosen to serve as building sticks and incorporated with a spin crossover metal center to form a metal organic framework. Coordination polymers of iron(II) with the formula [Fe(μ-atrz)(3)]X(2)·2H(2)O (where X = ClO(4)(-) (1·2H(2)O) and BF(4)(-) (2·2H(2)O)) in a 3D framework and [Fe(μ-atrz)(μ-pyz)(NCS)(2)]·4H(2)O (3·4H(2)O) in a 2D layer structure were synthesized and structurally characterized. The magnetic measurements of 1·2H(2)O and 2·2H(2)O reveal spin transitions near room temperature; that of 3 exhibits an abrupt spin transition at ~200 K with a wide thermal hysteresis, and the spin transition behavior of these polymers are apparently correlated with the water content of the sample. Crystal structures have been determined both at high spin and at low spin states for 1·2H(2)O, 2·2H(2)O, and 3·4H(2)O. Each iron(II) center in 1·2H(2)O and 2·2H(2)O is octahedrally coordinated with six μ-atrz ligands, which in turn links the other Fe center forming a strong three-dimensional (3D) network; counteranion and water molecules are located in the voids of the lattice. The FeN(6) octahedron of 3·4H(2)O is formed with two atrz, two pyrazine (pyz) ligands, and two NCS(-) ligands, where the ligands atrz and pyz are bridged between iron centers forming a 2D layer polymer. A zigzag chain of water molecules is found between the layers, and there is a distinct correlation between the thermal hysteresis with the amount of water molecules the exist in the crystal.  相似文献   

12.
Reaction of copper(II) tetrazolate-5-carboxylate with different neutral N-donor spacer ligands under hydrothermal conditions leads to the formation of five new coordination polymers, [Cu(tzc)(pyz)(0.5)(H(2)O)(2)](n)·H(2)O (1), [Cu(tzc)(pyz)](n) (2), [Cu(tzc)(pym)(H(2)O)](n) (3), [Cu(tzc)(dpe)(0.5)(H(2)O)](n) (4) and [Cu(tzc)(azpy)(0.5)(H(2)O)](n) (5) (tzc = tetrazolate-5-carboxylate, pyz = pyrazine, pym = pyrimidine, dpe = 1,2-di(4-pyridyl)ethylene and azpy = 4,4'-azopyridine). All five structures were characterized by X-ray single-crystal measurements and bulk material can be prepared phase pure in high yields. The crystal structures of the hydrates 1, 3, 4 and 5 show dimeric [Cu(2)(N(tzc)-N(tzc))(2)] building units formed by μ(2)-N1,O1:N2 bridging tzc ligands as the characteristic structural motif. These six-membered entities in 1, 4 and 5 are connected by μ(2)-N,N' bridging N-donor ligands into 1D chains and in 3 into 2D layers. In the crystal structure of compound 2 adjacent Cu(II) cations are connected by μ(2)-N1,O1:N4,O2 bridging tzc ligands into chains, which are further connected by μ(2)-N,N' bridging pyz ligands forming 2D layers. Extensive hydrogen bonds in all compounds play an important role in the construction of their supramolecular networks. Investigations of their thermal properties reveal water release upon heating according to the formation of anhydrates before starting decomposing above 220 °C. Furthermore, the magnetic properties have been studied leading to consistent global antiferromagnetic exchange interactions with coupling constants of J = 3 ± 1 cm(-1) and long-range antiferromagnetic ordering states at lower temperatures.  相似文献   

13.
A metal-segregated layered compound, containing square nets of Cu(pyz)(2)(2+) and buckled V(6)O(16)(2)(-) layers, has been synthesized using hydrothermal techniques to have the composition V(6)O(16)Cu(C(4)H(4)N(2))(2) x (H(2)O)(0.22(1)) (C(4)H(4)N(2) = pyrazine, pyz). The Cu(II) square nets are nearly regular and undergo an antiferromagnetic transition at 8 K. In contrast to the plethora of recently synthesized metal-oxide clusters, chains, and networks in the VO(x)/M/L (M = late transition element; L = organonitrogen ligand) system, this compound is a relatively rare example that contains two different metals distributed into distinct layers. An application of charge density matching to form layered structures is postulated.  相似文献   

14.
Two new cobalt phosphates, [Co(3)(pyz)(HPO(4))(2)F(2)] (1) and [Co(3)(4,4'-bpy)(HPO(4))(2)F(2)].xH(2)O (x approximately 0.7) (2), have been synthesized by hydrothermal methods in the presence of aromatic amines, and characterized by single-crystal X-ray diffraction and magnetic susceptibility. Their structures consist of neutral sheets of fluorinated cobalt phosphate which are pillared through pyrazine and 4,4'-bipyridine molecules to form 3D frameworks. The structures are related to that of the mineral lazulite. Both compounds show long-range antiferromagnetic ordering below 15 K and metamagnetic behaviors. Compound 1 reveals a two-step magnetic phase transition. Crystal data for 1: monoclinic, space group C2/c (No. 15), a = 21.809(4) A, b = 7.370(1) A, c = 7.395(1) A, beta = 103.753(3) degrees, and Z = 4. Crystal data for 2 are the same as those for 1 except a = 29.940(2) A, b = 7.4421(5) A, c = 7.4170(5) A, and beta = 93.444(1) degrees.  相似文献   

15.
Crystals of CuNb(pyz)2OF5 · (pyz)(H2O) ( 1 ) and [Cu(pyz)2.5]+ [NbF6]? · (pyz) ( 2 ) were grown (150°C and autogeneous pressures) from CuO, 1/2(Nb2O5), (HF)x · pyridine, and H2O in excess pyrazine. Light blue single crystals of ( 1 ) are orthorhombic, crystallizing in space group Cccm (No. 66), with a = 14.547(1) Å, b = 16.135(2) Å, c = 13.803(2) Å, and Z = 8. The structure of ( 1 ) contains corner shared [Cu(pyz)4/2F2/2]+, [Cu(pyz)4/2O2/2], and [NbF4O1/2F1/2]?0.5 octahedra. Orange crystals of ( 2 ) are monoclinic, crystallizing in space group C2/c (No. 15), with a = 11.792(8) Å, b = 17.123(3) Å, c = 17.051(5) Å, β = 90.04(4)°, and Z = 8. The structure of ( 2 ) contains puckered rings of corner shared [Cu(pyz)(pyz)3/2]+ tetrahedra and isolated [NbF6]? anions within the rings.  相似文献   

16.
The combination of cis-protected metal fragments with linear linkers is expected to yield molecular squares. We found instead that treatment of the 90 degrees angular precursor trans-[RuCl2(dmso-S)4] (1) with an equivalent amount of the linear and rigid pyrazine (pyz) linker unexpectedly yields, in a number of different experimental conditions, the molecular triangle [{trans,cis-RuCl2(dmso-S)2(mu-pyz)}3] (3), together with polymeric material. Very similar results were also obtained from the reaction between 1 and the preformed corner fragment trans,cis,cis-[RuCl2(dmso-S)2(pyz)2] (6). In both cases, the expected molecular square [{trans,cis-RuCl2(dmso-S)2(mu-pyz)}4] (4) was observed only as a transient species. These results suggest that 3, which is the first example of a neutral molecular triangle with octahedral metal corners and pyrazine edges, is both the thermodynamic and the kinetic product of the reactions described above. The X-ray structure of 3 shows that the main distortions from ideal coordination geometry concern the N-Ru-N angles, which are narrower than 90 degrees , and the coordination bonds of pyz. The pyrazine molecules, which are basically planar, are significantly tilted from linearity. Calculations performed on 6 indicated that the N-Ru-N angle is ca. six times more rigid than the tilt angle of pyrazine. The structural and theoretical findings on 3 and 6, together with the previous examples of molecular triangles and squares with cis-protected metal corners and linear pyz edges, suggest that the entropically favored molecular triangles might be preferred over the expected molecular squares with metal corner fragments that spontaneously favor Npyz-M-Npyz angles narrower than 90 degrees because of the presence of ancillary ligands with significant steric demand on the coordination plane. The rather-flexible coordination geometry of pyrazine can accommodate the moderate distortions from linearity required to close the small metallacycle with modest additional strain.  相似文献   

17.
Wang QM  Mak TC 《Inorganic chemistry》2003,42(5):1637-1643
The first successful attempt to construct supramolecular entities via incorporation of bifunctional exodentate ligands into the silver acetylide system is reported. Coordination assembly with nitrogen-donor spacers led to the formation of five distinct supramolecular complexes, namely [(Ag(2)C(2))(AgCF(3)CO(2))(4)(pyz)(2)](n) (1), [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(CF(3)CO(2))(4)(DabcoH)(4)(H(2)O)(1.5)].H(2)O (2), [(Ag(2)C(2))(AgCF(3)CO(2))(4)(CF(3)CO(2))(bpaH)](n)() (3), [(Ag(2)C(2))(AgCF(3)CO(2))(8)(bpa)(4)](n) (4), and [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(bppz)(2)(H(2)O)](n) (5) (pyz = pyrazine; Dabco = 1,4-diazabicyclo[2.2.2]octane; bpa = 1,2-bis(4-pyridyl)ethane; bppz = 2,3-bis(2-pyridyl)pyrazine). Complex 1 is a three-dimensional framework composed of silver columns cross-linked by pyrazine bridges, whereas 2 contains a discrete supermolecule whose core is a Ag(14) double cage that is completely surrounded by trifluoroacetate, aqua, and terminal monoprotonated Dabco ligands. Complex 3 has a branched-tree architecture with one terminal of the bpa ligand attached to the silver backbone and the other exposed and protonated. In 4, neutral decanuclear [(Ag(2)C(2))(AgCF(3)CO(2))(8)] units are interlinked by bpa spacers adopting both gauche and anti conformations to generate a layer structure. Another two-dimensional network was formed with bppz serving as an angular bridging ligand in 5, in which the building unit is a silver quadruple cage containing 24 silver atoms.  相似文献   

18.
In the title metal–organic framework complex, {[Cu(C4H4N2)2](C8H5O7S)·H2O}n or {[CuI(pyz)2](H2SIP)·H2O}n (pyz is pyrazine and H3SIP is 5‐sulfoisophthalic acid or 3,5‐dicarboxybenzenesulfonic acid), the asymmetric unit is composed of one copper(I) center, one whole pyrazine ligand, two half pyrazine ligands lying about inversion centres, one H2SIP anion and one lattice water molecule, wherein each CuI atom is in a slightly distorted tetrahedral coordination environment completed by four pyrazine N atoms, with the Cu—N bond lengths in the range 2.017 (3)–2.061 (3) Å. The structure features a three‐dimensional diamondoid network with one‐dimensional channels occupied by H2SIP anions and lattice water molecules. Interestingly, the guest–water hydrogen‐bonded network is also a diamondoid network, which interpenetrates the metal–pyrazine network.  相似文献   

19.
The solid state and solution structure of 2,3-dicyano-5,6-di(2-thienyl)-1,4-pyrazine, [(CN)(2)Th(2)Pyz], and its Pd(II) derivative, [(CN)(2)Th(2)Pyz(PdCl(2))(2)]·H(2)O, formed by reaction of [(CN)(2)Th(2)Pyz] with [(C(6)H(5)CN)(2)PdCl(2)] were characterized by X-ray, UV-visible, (1)H and (13)C NMR, and extended X-ray absorption fine structure (EXAFS) spectral measurements. The X-ray crystal structure of [(CN)(2)Th(2)Pyz] shows the presence of one thienyl ring positioned orthogonal to the rest of the molecule, with the two vicinal thienyl rings lying orthogonal to each other in a rare arrangement. NMR studies of [(CN)(2)Th(2)Pyz] in the solid state and in solutions of dimethylformamide or dimethyl sulfoxide confirm a nonequivalence of the thienyl rings in the solid state and also in solution. EXAFS results indicate that two distinct Pd(II) coordination sites are formed at the di(2-thienyl)pyrazino moiety of [(CN)(2)Th(2)Pyz(PdCl(2))(2)]·H(2)O, with identical Pd-N(pyz) (2.03(3) ?) and Pd-Cl (2.36(3) ?) bond lengths but with different Pd-S1 (2.25(4) ?) and Pd-S2 (3.21(5) ?) bond distances in an overall asymmetric molecular framework. Density functional theory (DFT) and time-dependent DFT (TDDFT) theoretical studies also provide information about the structure and spectral behavior of the precursor and its metalated Pd(II) derivative. (1)H/(13)C NMR and UV-visible spectral measurements were also carried out on two heteropentametallic porphyrazine macrocycles which were prepared by a reaction of PdCl(2) with [Th(8)TPyzPzM] where Th(8)TPyzPz = tetrakis-2,3-[5,6-di-(2-thienyl)-pyrazino]porphyrazinato dianion and M = Mg(II)(H(2)O) or Zn(II). Spectroscopic data on the newly synthesized [(PdCl(2))(4)Th(8)TPyzPzM] compounds suggest that the binding of PdCl(2) involves coordination sites of the type S(2(th))PdCl(2) with the two thienyl rings of each di(2-thienyl)pyrazino fragment bound to Pd(II) in an equivalent manner ("th-th" coordination). This is similar to what was found for the corresponding octapyridinated analogues ("py-py" coordination).  相似文献   

20.
The reactions of FeX2 (X = Cl, Br or I) with pyrazine (pyz) yield the Fe(pyz)2X2 compounds. Examination of IR and Raman spectra in the medium- and far-IR region as well as studies of electronic and Mössbauer spectra suggests that the complexes contain six-coordinate high-spin Fe(II) in the FeN4X2 chromophore. The complexes have a polymeric pseudo-octahedral pyz-bridged structure. The magnetic moments are independent of temperature and low-temperature magnetic measurements do not indicate any magnetic ordering above 4.2 K in these compounds. The π-acceptor properties of pyz are reflected both in the electronic spectra evaluated in terms of the angular overlap model and the Mössbauer parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号