首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic structure factor S(Q,omega) of liquid ammonia has been measured by inelastic x-ray scattering in the terahertz frequency region as a function of the temperature in the range of 220-298 K at a pressure P=85 bars. The data have been analyzed using the generalized hydrodynamic formalism with a three term memory function to take into account the thermal, the structural, (alpha) and the microscopic (mu) relaxation processes affecting the dynamics of the liquid. This allows to extract the temperature dependence of the structural relaxation time (tau(alpha)) and strength (Delta(alpha)). The former quantity follows an Arrhenius behavior with an activation energy E(a)=2.6+/-0.2 kcal/mol, while the latter is temperature independent suggesting that there are no changes in the interparticle potential and arrangement with T. The obtained results, compared with those already existing in liquid water and liquid hydrogen fluoride, suggest the strong influence of the connectivity of the molecular network on the structural relaxation.  相似文献   

2.
We combine molecular dynamics simulations and analytic modeling to determine the origin of the non-Arrhenius temperature dependence of liquid water's reorientation and hydrogen-bond dynamics between 235 K and 350 K. We present a quantitative model connecting hydrogen-bond exchange dynamics to local structural fluctuations, measured by the asphericity of Voronoi cells associated with each water molecule. For a fixed local structure the regular Arrhenius behavior is recovered, and the global anomalous temperature dependence is demonstrated to essentially result from a continuous shift in the unimodal structure distribution upon cooling. The non-Arrhenius behavior can thus be explained without invoking an equilibrium between distinct structures. In addition, the large width of the homogeneous structural distribution is shown to cause a growing dynamical heterogeneity and a non-exponential relaxation at low temperature.  相似文献   

3.
We examine the temperature dependence of the electron spin relaxation times of the molecules N@C60 and N@C70 (which comprise atomic nitrogen trapped within a carbon cage) in liquid CS2 solution. The results are inconsistent with the fluctuating zero-field splitting (ZFS) mechanism, which is commonly invoked to explain electron spin relaxation for S> or =1 spins in liquid solution, and is the mechanism postulated in the literature for these systems. Instead, we find an Arrhenius temperature dependence for N@C60 , indicating the spin relaxation is driven primarily by an Orbach process. For the asymmetric N@C70 molecule, which has a permanent ZFS, we resolve an additional relaxation mechanism caused by the rapid reorientation of its ZFS. We also report the longest coherence time (T2) ever observed for a molecular electron spin, being 0.25 ms at 170 K.  相似文献   

4.
The polarized (VV) and depolarized (VH) light scattering spectra of polyisobutylene, poly(methyl methacrylate), and glycerol were measured in the gigahertz frequency range at temperatures below and above the glass transition. Both VV and VH spectra exhibit a significant constant loss contribution that appears as a frequency‐independent imaginary part of the susceptibility spectrum. Existence of the frequency‐independent susceptibility in VV spectra below the Brillouin lines suggests that the constant loss also appears in mechanical relaxation in the gigahertz frequency range. Intensity of the constant loss increases strongly with temperature. Analysis of the spectra and literature data suggests that the constant loss can be general for many glass‐forming systems, but it is hidden in many cases by other relaxation contributions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 201–209, 2002  相似文献   

5.
The vertical vertical (VV), horizontal vertical (HV), and vertical horizontal (VH) hyper-Rayleigh scattering (HRS) spectra were measured for liquid CH3NO2 at T= 300 K. The main HRS spectral component has a width upsilon1=1.28 +/- 0.04 cm(-1), which gives an orientation relaxation time pi=4.1 +/- 0.1 ps in good agreement with other experiments. However, the VH spectrum also contains a previously unobserved strong narrow peak at zero-frequency shift, absent from the VV and HV spectra, which is due to a slowly relaxing longitudinal orientation mode. The upper bound on the width of this peak is 5 MHz, which corresponds to a relaxation time pi > 30 ns.  相似文献   

6.
The structure and dynamical properties of liquid N-methylacetamides (NMA) are calculated at five different temperatures and at four different pressures using classical molecular dynamics simulations. Our results are analyzed in terms of pressure-induced changes in structural properties by investigating the radial distribution functions of different atoms in NMA molecule. It is found that the first peak and also the second peak of C-O and N-H are well defined even at higher temperature and pressure. It is also observed that the number of hydrogen bonds increase with application of pressure at a given temperature. On the other hand, the calculated hydrogen bond energy (E(HB)) shows that the stability of hydrogen bond decreases with increasing of pressure and temperature. Various dynamical properties associated with translational and rotational motion of neat NMA are calculated and the self-diffusion coefficient of NMA is found to be in excellent agreement with the experiment and the behavior is non-Arrhenius at low temperatures with application of pressures. The single particle orientational relaxation time for dipole vector and N-C vector are also calculated and it is found that the orientational relaxation time follows Arrhenius behavior with a variation of temperature and pressure.  相似文献   

7.
This work investigated the nanoconfinement effect on the molecular dynamics and phase transition of confined benzene inside titanate nanotubes with a uniform inner diameter of approximately 5.3 nm. For 13C-enriched organics, the 13C nuclear spin-spin relaxation was demonstrated as a sensitive tool to differentiate molecular translational motion and reorientation and, thus, was shown to be advantageous over the commonly employed 1H and 2H NMR for studying complex phase diagram, specifically, for separating the phase behavior of translational motion and the phase behavior of molecular reorientation. In such an approach, the melting of translational motion of confined benzene was explicitly observed to take place in a broad temperature range below the bulk melting temperature. The abrupt change of the 13C nuclear spin-spin relaxation time of the confined liquid benzene at about 260 K suggested that nanoconfinement induced two topologically distinct liquid phases.  相似文献   

8.
Using high-resolution quasielastic neutron scattering, we investigated the temperature dependence of single-particle dynamics of water confined in single- and double-wall carbon nanotubes with the inner diameters of 14+/-1 and 16+/-3 A, respectively. The temperature dependence of the alpha relaxation time for water in the 14 A nanotubes measured on cooling down from 260 to 190 K exhibits a crossover at 218 K from a Vogel-Fulcher-Tammann law behavior to an Arrhenius law behavior, indicating a fragile-to-strong dynamic transition in the confined water. This transition may be associated with a structural transition from a high-temperature, low-density (<1.02 gcm(3)) liquid to a low-temperature, high-density (>1.14 gcm(3)) liquid found in molecular dynamics simulation at about 200 K. However, no such dynamic transition in the investigated temperature range of 240-195 K was detected for water in the 16 A nanotubes. In the latter case, the dynamics of water simply follows a Vogel-Fulcher-Tammann law. This suggests that the fragile-to-strong crossover for water in the 16 A nanotubes may be shifted to a lower temperature.  相似文献   

9.
The acoustic properties of highly concentrated H(2)SO(4) are investigated performing visible and ultraviolet Brillouin scattering measurements. We analyzed the isotropic and anisotropic spectra of this molecular liquid in a wide temperature and exchanged wavector range in order to study the evolution of its sound velocity and viscosity. This allows us to extract the parameters required to describe its viscoelastic relaxation behavior. We found that the behavior of the hydrodynamic parameters of this molecular liquid shares some similarities with that of water indicating a rather high increase of sound velocity if compared to that measured by ultrasonics.  相似文献   

10.
Variable temperature 2H NMR experiments (line shape analysis, relaxation studies) were carried out on the pyridine-d5-tris-(1,2-dioxyphenyl)-cyclotriphosphazene inclusion compound in the temperature range between 110-300 K. It is found that the pyridine guests are highly mobile throughout the whole temperature range covered here. The observation of three superimposed 2H NMR signals can be understood in terms of a particular (motionally averaged) orientation of the pyridine molecules, which is a consequence of the molecular symmetry of the pyridine guests and the imposed channel restrictions. The experimental data are consistent with a combined rotation on cone-small angle fluctuation model, which assumes a fast molecular reorientation between two superimposed cones with an opening angle for the inner cone between 59-73 degrees (angle of fluctuation between 1-3 degrees ). On the basis of this model assumption it is possible to reproduce both the experimental 2H NMR line shapes and the spin-lattice relaxation data in a quantitative way. The analysis of the partially relaxed spectra (inversion recovery experiments) yields the correlation times for this overall motional process. They follow an Arrhenius behavior from which an activation energy of 8.7 +/- 0.4 kJ mol(-1) is derived. The results are discussed in the framework of the published data for related systems.  相似文献   

11.
In an attempt to seek out whether the reorientation time of a solute molecule is influenced by marginal changes to its shape, rotational relaxation of four coumarin solutes that are almost identical in size but subtly distinct in shape has been investigated in a viscous nonpolar solvent as a function of temperature. It has been observed that the reorientation times of the four coumarins differ significantly from one another. The four solutes have been treated as asymmetric ellipsoids and Stokes-Einstein-Debye hydrodynamic theory has been employed to calculate the shape factors and boundary condition parameters. The measured reorientation times when normalized by respective shape factors and boundary condition parameters can be scaled on a common curve, which is an indication that ellipsoid based hydrodynamic theory is adequate to model the reorientation times even when the differences in the shapes of the solute molecules are minimal.  相似文献   

12.
We propose a dynamic structure of coupled dynamic molecular strings for supercooled small polar molecule liquids and accordingly we obtain the Hamiltonian of the rotational degrees of freedom of the system. From the Hamiltonian, the strongly correlated supercooled polar liquid state is renormalized to a normal superdipole liquid state. This scenario describes the following main features of the primary or alpha-relaxation dynamics in supercooled polar liquids: (1) the average relaxation time evolves from a high temperature Arrhenius to a low temperature non-Arrhenius or super-Arrhenius behavior; (2) the relaxation function crosses over from the high temperature exponential to low temperature nonexponential form; and (3) the temperature dependence of the relaxation strength shows non-Curie features. According to the present model, the crossover phenomena of the first two characteristics arise from the transition between the superdipole gas and the superdipole liquid. The model predictions are quantitatively compared with the experimental results of glycerol, a typical glass former.  相似文献   

13.
Broadband dielectric and terahertz spectroscopy (10(-2)-10(+12) Hz) are combined with pulsed field gradient nuclear magnetic resonance (PFG-NMR) to explore charge transport and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. The dielectric spectra are interpreted as superposition of high-frequency relaxation processes associated with dipolar librations and a conductivity contribution. The latter originates from hopping of charge carriers on a random spatially varying potential landscape and quantitatively fits the observed frequency and temperature dependence of the spectra. A further analysis delivers the hopping rate and enables one to deduce--using the Einstein-Smoluchowski equation--the translational diffusion coefficient of the charge carriers in quantitative agreement with PFG-NMR measurements. By that, the mobility is determined and separated from the charge carrier density; for the former, a Vogel-Fulcher-Tammann and for the latter, an Arrhenius temperature dependence is obtained. There is no indication of a mode arising from the reorientation of stable ion pairs.  相似文献   

14.
The relaxation properties of polymer chains In the nematic LC-state or in the external quadrupole field may depend both on the variation of the conformation in the ordered state and on the activation barrier of the molecular (or external) field. This barrier should be surmounted during reorientation of chain elements. The lattice model theory of chain stiffening of macromolecules in the LC-state is proposed. The calculation and comparison of the longitudinal and transversal relaxation spectra for the continuous and discrete rotameric mechanism of the mobility are performed. For the simplest model of a heterogeneous polymer chain the possibility of the more complex relaxational behavior i.e. the existence of two longitudinal and two transversal relaxation spectra was shown.  相似文献   

15.
Time-resolved phosphorescence spectra and anisotropy of quinoxaline were measured in an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-HFP), in its supercooled state near the glass-transition temperature. The solvation dynamics results are compared with the rotational motion of the probe and with the dielectric behavior of the neat ionic liquid. The dynamics in the viscous state are highly dispersive and show a super-Arrhenius temperature dependence, as typical for glass-forming materials. Combined with room-temperature results, solvation dynamics is observed to follow the structural relaxation times in terms of eta/T for more than 10 decades, from subnanoseconds at room temperature to seconds near the glass-transition temperature T(g). The dielectric modulus relaxation follows this trend only for temperatures T > 1.2T(g) and departs significantly from eta/T in the 1.1T(g) > T > T(g) range. This deviation is reminiscent of the enhanced translational diffusion or fractional Stokes-Einstein behavior observed in many fragile supercooled liquids. Because the electric field relaxation in BMIM-HFP includes dc conductivity, this correlation function involves translational motion and thus displays the effect of enhanced diffusivity. A microscopic model is required for rationalizing the decoupling of solvation dynamics from the longitudinal time scales and the limitation of this effect to the viscous regime with T < 1.2T(g).  相似文献   

16.
《Liquid crystals》1999,26(6):835-847
Broad band dielectric measurements reveal that the reorientation of non-chiral rod-shaped low molecular mass liquid crystals is active around their molecular long axis and a short axis, in the smectic A and hexatic smectic B phase, respectively, as well as in the soft crystalline E phase of two isomeric stilbene compounds possessing an equal molecular length of their all-trans -conformations. One ('generalized') Arrhenius equation describes the temperature dependence of the reorientation around a molecular short axis for each of these phases of both compounds. A change of the activation energy related to the reorientation around a molecular short axis is accompanied by a slowing down of the reorientation around the molecular long axis in the soft crystalline E phase in one of these compounds, compelling evidence for a coupling of both reorientations. This result is discussed with respect to the biaxiality of the soft crystalline E phase.  相似文献   

17.
Surface light scattering (SLS) by capillary waves was used to investigate the adsorption behavior of non-ionic sugar surfactants at the air/liquid interface. SLS by the subphase (water) followed predictions from hydrodynamic theory. The viscoelastic properties (surface elasticity and surface viscosity) of monolayers formed by octyl beta-glucoside, octyl alpha-glucoside, and 2-ethylhexyl alpha-glucoside surfactants were quantified at submicellar concentrations. It is further concluded that a diffusional relaxation model describes the observed trends in high-frequency, nonintrusive laser light scattering experiments. The interfacial diffusion coefficients that resulted from fitting this diffusional relaxation model to surface elasticity values obtained with SLS reflect the molecular dynamics of the subphase near the interface. However, differences from the theoretical predictions indicate the existence of effects not accounted for such as thermal convection, molecular rearrangements, and other relaxation mechanisms within the monolayer. Our results demonstrate important differences in molecular packing at the air-water interface for the studied isomeric surfactants.  相似文献   

18.
We report on the interpretation of the thermally stimulated depolarization current (TSDC) experiments, with partial polarization methods, on the dielectric α‐relaxation. The results obtained on polyvinyl acetate are rationalized on the basis of the Boltzmann superposition principle in combination with a Kohlrausch–Williams–Watts (KWW) time decay of the polarization (with the β exponent essentially temperature independent and equal to the value determined by conventional dielectric methods at Tg). From this analysis of the global TSDC spectrum we found a complex temperature dependence of the KWW relaxation time, which is Arrhenius‐like at the lowest temperatures but crosses over to the Vogel–Fulcher behavior observed above Tg in the temperature range of the TSDC peak. On the basis of these results, we found the way of predicting the TSDC spectra measured after partial polarization procedures. We found that, the distribution of activation energies and compensation behavior deduced by following the standard way of analysis are associated to the assumption of an Arrhenius‐like temperature dependence of the α‐relaxation time in the temperature range explored by TSDC. Therefore we conclude that both the distribution of activation energies and compensation behavior obtained by following the standard way of analysis do not give a proper physical picture of the α‐relaxation of glassy polymers around the glass‐transition temperature. Our results also show that the partial polarization TSDC methods are not able to give insight about the actual existence or not of a distribution of relaxation times at the origin of the nonexponentiality of the α‐relaxation of polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2105–2113, 2000  相似文献   

19.
Slow to ultrafast dynamics of liquid acetone at variable temperature was investigated by depolarized Rayleigh and low-frequency Raman scattering spectroscopy, in the region 0-200 cm(-1). A detailed analysis was performed on the spectra and corresponding time responses, and a consistent view of the molecular dynamics of this dipolar solvent was obtained. The effects of temperature on the spectra were interpreted, and distinct dynamical processes identified. At very low frequencies, or long time scales, acetone dynamics is characterized by a slow diffusive reorientation obeying the Stokes-Einstein-Debye hydrodynamic theory only in the limit of subslip boundary conditions. An alternative model based on the microviscosity concept proved to be able to reproduce this correlation time and its temperature dependence. A comparative analysis of collective and single-molecule reorientational times, these latter estimated from intramolecular Raman spectra, led to an orientational correlation parameter g(2) of unity, which denotes a statistical disorder of molecular polarizability tensors. A fast local restructuring process is putatively responsible for an additional contribution at subpicosecond time scales often referred to as intermediate response in other molecular liquids. The high frequency portion of the dynamical susceptibility showed the signature of librational intermolecular motions, giving rise to an ultrafast decay of the time correlation function of polarizability anisotropy. The overall approach, which provided valuable information on dynamics, structure and molecular interactions of neat acetone, will be applied to acetone electrolytic solutions.  相似文献   

20.
This work describes the dielectric properties of piezoelectric poly(vinylidene fluoride) (PVDF) thin films in the frequency and temperature ranges relevant for usual applications. We measured the isothermal dielectric relaxation spectra of commercial piezoelectric PVDF thin films between 10 Hz to 10 MHz, at several temperatures from 278 K to 308 K. Measurements were made for samples in mechanically free and clamped conditions, in the direction of the poling field (perpendicular to the film). We found that the imaginary part of the dielectric relaxation spectra of free and clamped PVDF samples is dominated by a peak, above 100 kHz, that can be characterized by a Havriliak-Negami function. The characteristic time follows an Arrhenius dependence on temperature. Moreover, the spectra of the free PVDF samples show two additional peaks at low frequencies which are associated with mechanical relaxation processes. Our results are important for the characterization of piezoelectric PVDF, particularly after the stretching and poling processes in thin films, and for the design and characterization of a broad range of ultrasonic transducers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号