首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Multicenter integrals appearing in the Hartree–Fock–Roothaan equations for molecules are calculated using different kinds of series expansion formulas obtained from the expansions of integer and noninteger n Slater-type orbitals, in terms of Ψ α -exponential-type orbitals (where α=1, 0, –1, –2,...) at a displaced center, that form complete orthonormal sets and are represented by linear combinations of integer n Slater-type orbitals. The convergence of these series is tested by calculating concrete cases. The accuracy of the results is quite high for quantum numbers, screening constants, and location of orbitals. Received: 13 February 2002 / Accepted: 11 March 2002 / Published online: 4 July 2002  相似文献   

2.
 By the use of translation formulas for the expansion of Slater-type orbitals (STOs) in terms of STOs at a new origin, three-center electric and magnetic multipole moment integrals are expressed in terms of two-center multipole moment integrals for the evaluation of which closed analytical formulas are used. The convergence of the series is tested by calculating concrete cases. Computer results with an accuracy of 10−7 are obtained for 2ν– pole electric and magnetic multipole moment integrals for 1≤ν≤5 and for arbitrary values of screening constants of atomic orbitals and internuclear distances. Received: 28 October 1999 / Accepted: 15 February 2000 / Published online: 5 June 2000  相似文献   

3.
 An alternative theoretical approach to the polarization propagator based on a new finite expansion of a finite-dimensional matrix is presented. The general equations for such an expansion are derived and the validity conditions stated. This method is used to accomplish an approximate scheme for the self-energy of the particle–hole propagator within the superoperator formalism. Within this scheme each contribution includes corrections to infinite order in electronic interaction and so describes collective effects in a natural way. Individual contributions can be interpreted as describing the propagation of the interaction through a particular subset of electronic excitations. Comparison with other known approximation levels, such as the random-phase approximation, is also analyzed. Received: 14 February 2000 / Accepted: 18 April 2000 / Published online: 18 August 2000  相似文献   

4.
 By using completely optimized basis functions it is shown that the convergence of the Hartree–Fock energy for the H3 +, Li2 and N2 molecules is significantly better described by exponential behavior than by inverse power dependence. This is the case both with respect to the number of basis functions of a given type and with respect to the highest angular momentum function included. The Hartree–Fock limit for H3 + is estimated to be −1.300372125 hartree. Received: 14 February 2000 / Accepted: 12 April 2000 / Published online: 18 August 2000  相似文献   

5.
Ab initio calculations were performed to investigate the structure and bonding of the phenol dimer and its cation, especially the OH stretching frequencies. Some stable structures of the phenol dimer and its cation were obtained at the Hartree–Fock level and were found to be in agreement with predictions based on spectroscopic investigations. In these dimers the phenol moieties are bound by a single OH⋯O hydrogen bond. The hydrogen bond is much stronger in the dimer cation than in the neutral dimer. The calculated binding energy of the phenol dimer in the most stable structure was 6.5–9.9 kcal/mol at various levels of calculation, compared with the experimental value of 5 kcal/mol or greater. The binding energy of the phenol dimer cation is more than 3 times (24.1–30.6 kcal/mol) as large as that of the neutral dimer. For the phenol dimer the OH stretching frequency of the proton-accepting phenol (PAP) is 3652 cm−1 and that of the proton-donating phenol (PDP) is 3516 cm−1; these are in agreement with observed values of 3654 and 3530 cm−1, respectively. For the phenol dimer cation the OH stretching frequency of the PAP is 3616–3618 cm−1 in comparison with an observed value of 3620 ± 3 cm−1. That of the PDP in the dimer cation is calculated to be 2434–2447 cm−1, which is 1210–1223 cm−1 lower than that of the bare phenol. The large reduction in the OH stretching frequency of the PDP in the phenol dimer cation is attributed to the formation of a stronger hydrogen bond in the cation than in the neutral dimer. Received: 24 March 2000 / Accepted: 26 April 2000 / Published online: 11 September 2000  相似文献   

6.
Based on the continuum dielectric model, this work has established the relationship between the solvent reorganization energy of electron transfer (ET) and the equilibrium solvation free energy. The dipole-reaction field interaction model has been proposed to describe the electrostatic solute-solvent interaction. The self-consistent reaction field (SCRF) approach has been applied to the calculation of the solvent reorganization energy in self-exchange reactions. A series of redox couples, O2/O 2, NO/NO+, O3/O 3, N3/N 3, NO2/NO+ 2, CO2/CO 2, SO2/SO 2, and ClO2/ClO 2, as well as (CH2)2C-(-CH2-) n -C(CH2)2 (n=1 ∼ 3) model systems have been investigated using ab initio calculation. For these ET systems, solvent reorganization energies have been estimated. Comparisons between our single-sphere approximation and the Marcus two-sphere model have also been made. For the inner reorganization energies of inorganic redox couples, errors are found not larger than 15% when comparing our SCRF results with those obtained from the experimental estimation. While for the (CH2)2C–(–CH2–) n –C(CH2)2 (n=1 ∼ 3) systems, the results reveal that the solvent reorganization energy strongly depends on the bridge length due to the variation of the dipole moment of the ionic solute, and that solvent reorganization energies for different systems lead to slightly different two-sphere radii. Received: 19 April 2000 / Accepted: 6 July 2000 / Published online: 27 September 2000  相似文献   

7.
A method applying ab initio direct dynamics has been utilized in studying the hydrogen abstraction reaction HCN + OH → CN + H2O. The geometries of the reactants, products, and the transition state have been optimized at the QCISD/6-311G(d, p) level. Single-point energies were further evaluated at the QCISD(T)/6-311+G(2df, 2p)//QCISD/6-311G(d, p) level. The barrier heights for the forward and reverse reactions were predicted to be 15.95 and 7.51 kcal mol−1 at the QCISD(T)/6-311 + G(2df, 2p)//QCISD/6-311G(d, p) level, respectively. The reaction rate constants were calculated in the temperature range from 298 to 4,000 K using the canonical variational transition-state theory with a small-curvature tunneling correction. The results of the calculation show that the theoretical rate constants are in good agreement with experimental data over the measured temperature range of 400–2,600 K. Received: 18 August 2002 / Accepted: 30 August 2002 / Published online: 20 November 2002 Acknowledgements. Our thanks are due to D.G. Truhlar for providing the POLYRATE 8.2 program. This work was supported by the National Science Foundation of China. We also thank D.C. Fang and Y. M. Xie for their valuable help, and P.R. Yan for reading our paper. Correspondence to: Q. S. Li e-mail: qsli@mh.bit.edu.cn  相似文献   

8.
 A concerted mechanism for proton exchange between water and the amino acid side chains of cysteine, serine, arginine and glutamic acid has been investigated with hybrid density functional theory. The models used include, besides the amino acid side chain, a number of water molecules ranging from one to five in some cases. The modeling of the amino acids without their backbones is shown to be an excellent approximation. Long-range polarization effects were incorporated through a dielectric cavity method allowing a better comparison to existing measurements for free amino acids in water. The barriers converge rather fast with the number of water molecules for all the present amino acids and the converged values are in reasonable agreement with experiments with discrepancies in the range 2–6 kcal/mol. The dielectric effects were found to be small for all systems except cysteine, where there is a lowering of the barrier by 3–5 kcal/mol. The transition states for these concerted pathways form rings in which the separated charges can be stabilized. Received: 25 October 1999 / Accepted: 5 April 2000 / Published online: 21 June 2000  相似文献   

9.
 Ab initio molecular electronic structure calculations are performed for H5 + at the QCISD(T) level of theory, using a correlation-consistent quadruple-zeta basis set. Structures, vibrational frequencies and thermochemical properties are evaluated for ten stationary points of the H5 + hypersurface and are compared with previous calculations. The features of the H3 +…H2 interaction at intermediate and large intermolecular distances are also investigated. Furthermore, an analytical functional form for the potential-energy surface of H5 + is derived using a first-order diatomics-in-molecule perturbation theory approach. Its topology is found to be qualitatively correct for the short-range interaction region. Received: 15 March 2001 / Accepted: 5 July 2001 / Published online: 11 October 2001  相似文献   

10.
 The convergence of chemisorption energy for hydrogen and oxygen on gold clusters is studied. Two theoretical approaches have been employed; wavefunction methods at the self-consistent-field second–order M?ller–Plesset level and density functional theory and the two methods are compared. Relativistic effective core potentials exploited in the former approach were developed in this work. Received: 25 October 1999 / Accepted: 21 February 2001 / Published online: 11 October 2001  相似文献   

11.
The [H,S,Cl] potential-energy surface has been investigated at the self-consistent field (SCF), complete active space self-consistent field (CASSCF), second-order M?ller–Plesset, coupled-cluster single-double and perturbative triple excitation, [CCSD(T)]/6-31G(d,p), 6-31G(2df,2pd), and correlation-consistent polarized valence triple zeta (cc-pVTZ) levels of theory. CCSD(T)/ cc-pVTZ results predict a very stable HSCl species, an isomer HClS, 51.84 kcal/mol higher in energy, and a transition state 57.68 kcal/mol above HSCl. Independent of the level of theory, results with the smaller 6-31G(d,p) basis set turned out to be poor, especially for HClS. Vibrational analysis indicates that both species can be easily differentiated if isolated. Bonding differences between these molecules are illustrated by contour plots of valence orbitals. Viewed classically, bonding in HClS involves a dative bond. Transition-state rate constants, and equilibrium constants for the HSCl ↔ HClS isomerization have been estimated for various temperatures (200–1000 K). At 298.15 K, the forward rate is predicted to be 7.95 × 10−29 s−1, and the equilibrium constant to be 2.31 × 10−38. Tunneling corrections vary from 1.57 at 298.15 K to 1.05 at 1000 K. Activation energies have been obtained by a two-points linear fit to the Arrhenius equation. Received: 7 May 1999 / Accepted: 22 July 1999 / Published online: 4 October 1999  相似文献   

12.
 In order to calculate more accurately the enthalpies of formation, ΔH f°(298 K), for large molecules using the CBS-4M method, a new formulation of the empirical higher-level correction to the energy is proposed: ΔE=a|S|2 i i I i i +b(n α+n β)+cΔ<S 2>+Σn i d i . The new methodology (CBS-4MB) applied to a set of 114 molecules of different size significantly decreases the mean absolute deviation from 3.78 to 2.06 kcal/mol. Received: 7 February 2001 / Accepted: 5 April 2001 / Published online: 13 June 2001  相似文献   

13.
Relativistic energy-consistent small-core lanthanide pseudopotentials of the Stuttgart–Bonn variety and extended valence basis sets have been used for the investigation of the dimers La2 and Lu2. It was found that the ground states for La2 and Lu2 are most likely 1 g + g 2π u 4) and 3 g (4f 144f 14σ g 2σ u 2πu 2), respectively. The molecular constants including error bars were derived from multireference configuration interaction as well as coupled-cluster calculations, taking into account corrections for atomic spin–orbit splitting as well as possible basis set superposition errors. The theoretical values for La2 (R e=2.70±0.03 ?, D e=2.31±0.13 eV, ωe=186±13 cm−1) show good agreement with the experimental binding energy (D e=2.52±0.22 eV), but the experimental vibrational constant in an Ar matrix (ωe=236±0.8 cm−1) is significantly higher. For Lu2 the theoretical values (R e=3.07±0.03 ?, D e=1.40±0.12 eV, ωe=123±1 cm−1) are in overall excellent agreement with experimental data (D e=1.43±0.34 eV, ωe=122± 1 cm−1). The electronic structures of La2 and Lu2 are compared to those other lanthanide dimers and trends in the series are discussed. Received: 25 March 2002 / Accepted: 2 June 2002 / Published online: 21 August 2002  相似文献   

14.
A value of −0.33 eV or −7.6 kcal mol−1 has been obtained for the vertical delocalisation energy of trans-1,3-butadiene from a nonempirical molecular orbital calculation on the π system. The result agrees well enough with ab initio calculations to suggest that a simplified approach need not be semiempirical. In a basis of orthogonalised atomic orbitals the central bond order is found to be 0.295 (Hückel value 0.447) for the delocalised structure and 0.125 for the localised (Hückel value zero). Core resonance integrals between neighbouring atoms, the analogues of Hückel's β, have theoretical values of −3.9 and −3.2 eV compared with −3.6 eV in benzene. Received: 11 May 1999 / Accepted: 22 July 1999 / Published online: 2 November 1999  相似文献   

15.
 Ab initio calculations have been performed to study the molecular structures and vibrational levels of the four low-lying ionic states (1, 22Π, and 1, 22Σ+) of carbonyl sulfide. The global regions of the potential-energy surfaces have been obtained by multireference single and double excitation configuration interaction calculations. Vibrational calculations using explicit vibrational Hamiltonians have been used for vibrational analysis. The equilibrium molecular structures and a vibrational analysis of the four ionic states are presented. The theoretical ionization intensity curves including the vibrational structures of the ionic states are also presented and are compared with the photoelectron spectrum. Received: 20 January 2001 / Accepted: 22 August 2001 / Published online: 30 October 2001  相似文献   

16.
A number of configurations of NLi n Na2 (n = 1–4) species were optimized using the B3LYP–density functional theory method; the 6-31G* basis set was used in this calculation. In order to study all possible dissociation energies, some related species such as NLi2Na, NLi n (n = 1–4), Li n (n = 1, 2) and Na n (n = 1, 2) were also considered. Optimizations of these species were followed by fundamental frequency calculations at the same level. Global minima of these species were shown to adopt C 2 v (NLi4Na2, NLi2Na2), D 3 h (NLi3Na2) and C s (NLiNa2 and NLi2Na) configurations. All possible dissociation energies were obtained. Received: 30 November 1998 / Accepted: 15 October 1999 / Published online: 14 March 2000  相似文献   

17.
From quantum-chemical calculations of rotational g factor and new experimental measurements of strengths of lines in infrared spectra of vibration–rotational bands v′–0 in absorption, with 1≤v′≤4, of 12C16O, and from analysis of 16,947 frequencies and wave numbers assigned to pure rotational and vibration–rotational transitions within electronic ground state X 1Σ+, including new measurements of band 4–0 of 12C16O, we evaluate radial functions for potential energy and electric dipolar moment, the latter both in polynomial form and as a rational function that has qualitatively correct behaviour under limiting conditions. Received: 8 November 2001 / Accepted: 5 February 2002 / Published online: 14 August 2002  相似文献   

18.
Ab initio molecular orbital theory and density functional theory have been used to study nine isomers of N7 ionic clusters with low spin at the HF/6-31G*, MP2/6-31G*, B3LYP/6-31G*, and B3LYP/6-311(+)G* levels of theory. All stationary points are examined with harmonic vibrational frequency analyses. Four N7 + isomers and five N7 isomers are determined to be local minima or very close to the minima on their potential-energy hypersurfaces, respectively. For N7 + and N7 , the energetically low lying isomers are open-chain structures (C 2 v and C 2 v or C2). The results are very similar to those of other known odd-number nitrogen ions, such as N5 +, N9 +, and N9 , for which the open-chain structures are also the global minima. This research suggests that the N7 ionic clusters are likely to be stable and to be potential high-energy-density materials if they could be synthesized. Received: 16 July 2001 / Accepted: 8 October 2001 / Published online: 21 January 2002  相似文献   

19.
Sequential Monte Carlo/quantum mechanical calculations are performed to study the solvent effects on the electronic absorption spectrum of formamide (FMA) in aqueous solution, varying from hydrogen bonds to the outer solvation shells. Full quantum-mechanical intermediate neglect of differential overlap/singly excited configuration interaction calculations are performed in the supermolecular structures generated by the Monte Carlo simulation. The largest calculation involves the ensemble average of 75 statistically uncorrelated quantum mechanical results obtained with the FMA solute surrounded by 150 water solvent molecules. We find that the n → π* transition suffers a blueshift of 1,600 cm−1 upon solvation and the π → π* transition undergoes a redshift of 800 cm−1. On average, 1.5 hydrogen bonds are formed between FMA and water and these contribute with about 20% and about 30% of the total solvation shifts of the n → π* and π → π* transitions, respectively. The autocorrelation function of the energy is used to sample configurations from the Monte Carlo simulation, and the solvation shifts are shown to be converged values. Received: 14 March 2002 / Accepted: 3 April 2002 / Published online: 24 June 2002  相似文献   

20.
 In order to identify ineffective and, hence, superfluous configurations in algorithmically generated configuration spaces, a direct configuration interaction (CI) method has been developed for determining completely general configurational expansions based on arbitrary determinantal configuration lists. While based on the determinantal ordering scheme of Knowles and Handy, our direct CI algorithm differs from previous ones by the use of the Slater–Condon expressions in direct conjunction with single and double replacements. A full, as well as a completely general selected, CI program has been implemented. With it, full configuration spaces of Ne, C2, CO and H2O with up to about 40 million determinants have been investigated. It has been found that, in all cases, fewer than 1% of the configurations in a natural-orbital-based configuration expansion reproduce the exact results within chemical accuracy. Received: 19 December 2000 / Accepted: 9 May 2001 / Published online: 11 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号