共查询到18条相似文献,搜索用时 62 毫秒
1.
NIR光谱的Isomap-PLS非线性建模方法 总被引:6,自引:0,他引:6
针对样品的近红外(NIR)光谱与其物理化学性质之间存在的非线性关系,提出了一种结合等距映射(Isomap)和偏最小二乘(PLS)的非线性建模新方法。Isomap是一种新的非线性降维方法,属于流形学习方法,能有效地发现高维数据中的本真低维结构。Isomap-PLS建模方法首先用Isomap对高维NIR光谱数据作非线性降维,再用PLS降维并建立校正模型。将Isomap-PLS建模方法分别应用于两个公开的NIR光谱标准数据集,并与PLS单独建模进行比较。结果表明,在两个数据集上,用Isomap-PLS方法建立的校正模型比单独用PLS算法建立的校正模型具有更小的交叉验证均方根误差(RMSECV);对某些性质数据,Isomap-PLS模型比PLS模型的RMSECV值要小2~5倍。因此,Isomap能够有效反映NIR光谱中存在的非线性结构,Isomap-PLS比PLS具有更好的建模与预测能力。 相似文献
2.
基于NIR分析和模式识别技术的玉米种子识别系统 总被引:4,自引:0,他引:4
模式识别技术及数据挖掘方法已成为化学计量学的研究热点。近红外(NIR)光谱分析以其快速、简便、非破坏性等优势广泛应用于光谱信号的处理和分析模型的建立。文章基于五种不同的模式识别方法:局部线性嵌入(LLE),小波变换(WT),主成分分析(PCA),偏最小二乘(PLS)和支持向量机(SVM),利用NIR技术建立了玉米种子的模式识别系统,并将其应用于108玉米杂交种和母本178种子的近红外光谱样品。首先利用LLE,WT,PCA,PLS进行消噪或降维,然后运用SVM进行分类识别,而一模支持向量机(1-norm SVM)算法直接进行分类识别。三个不同NIR光谱范围的数值实验显示:PCA+SVM,LLE+SVM,PLS+SVM识别效果甚佳,而WT+SVM和1-norm SVM方法也有较高的分类精度。实验结果表明了本文提出方法的可行性和有效性,为利用近红外光谱和模式识别技术进行种子识别研究提供了理论依据和实用方法。 相似文献
3.
模式识别技术及数据挖掘方法已成为化学计量学的研究热点。近红外(NIR)光谱分析以其快速、简便、非破坏性等优势广泛应用于光谱信号的处理和分析模型的建立。基于五种不同的模式识别方法:局部线性嵌入(LLE),小波变换(WT),主成分分析(PCA),偏最小二乘(PLS)和支持向量机(SVM),利用NIR技术建立了玉米种子的模式识别系统,并将其应用于108玉米杂交种和母本178种子的近红外光谱样品。首先利用LLE,WT,PCA,PLS进行消噪或降维,然后运用SVM进行分类识别,而一模支持向量机(1-normSVM)算法直接进行分类识别。三个不同NIR光谱范围的数值实验显示:PCA+SVM,LLE+SVM和PLS+SVM识别效果甚佳,而WT+SVM和1-norm SVM方法也有较高的分类精度。实验结果表明了本文提出方法的可行性和有效性,为利用近红外光谱和模式识别技术进行种子识别研究提供了理论依据和实用方法。 相似文献
4.
近红外(NIR)光谱一般具有较多的波长变量数,对其直接或间接地进行变量选择是提高模型稳定性能及预测性能的关键。最小角回归(LAR)是一种相对较新和有效的机器学习算法,常用于进行回归分析和变量选择。面向光谱建模应用,提出一种LAR结合遗传偏最小二乘法(GA-PLS)的变量选择方法,可有效筛选出少数特征波长点。首先在全光谱区利用LAR消除变量间的共线性得到初筛波长点,然后用GA-PLS对LAR筛选出的波长点进一步优选从而得到最终建模用的特征波长点。为验证本文方法的有效性,以药片和汽油的近红外光谱回归分析作为应用案例,对原光谱进行预处理后,采用该方法进行变量筛选,然后分别建模其中的活性成分含量和C10含量。结果显示,在这两个应用中,最终优化得到的特征波长点数均只需七个,而两者的预测决定系数R2p分别达到0.933 9和0.951 9,与全光谱、无信息变量消除法(UVE)和连续投影算法(SPA)等方法相比,特征波长点更少,同时R2p和预测均方根误差RMSEP值更优。因此,LAR结合GA-PLS,能有效地从近红外光谱中选择出信息变量从而减少建模波数,提高预测精度,拥有较好的模型解释性。该方法可为特定领域的专用光谱仪设计提供有效的波长筛选工具。 相似文献
5.
糖度是影响鲜食葡萄品质与风味的关键因素,对其可溶性固形物SSC的检测具有切实需求。近年来,随着芯片级光谱传感器的生产技术趋于成熟,具有高精确性与稳定性的片上光谱传感器为可见/近红外检测技术开辟了新的途径。设计、搭建、测试了一套体积小、易操作、低成本的用于鲜食葡萄糖度无损检测的光学系统。系统以两块搭载芯片级光谱分析技术的新一代可见/近红外光谱传感器AS7263(美国AMS半导体公司)为核心元件。每个AS7263传感器具有6个集成了纳米光干涉滤波器的数字光谱通道和一个可通过单芯片准确控制电流(1~100 mA)的LED光源。传感器光谱通道的中心波长范围610~860 nm;两个LED光源的中心波长分别为730和850 nm,半峰全宽(FWHM)为50 nm。首先,运用此原型在避光环境下采集276颗巨峰葡萄浆果的光谱信息;用手持式PAL-1糖度仪检测样本SSC(°Brix)并计算基于t分布的样本糖度真值SSCt:SSCt0.9与SSCt0.95。其次,针对样本原始光谱数据,采用PCA提取主成分,根据得分因子分布,剔除了16个位... 相似文献
6.
提出了一种基于净信号分析的局部建模算法,以克服光谱定量分析中样本间差异性过大和样本待测性质与光谱之间存在非线性等问题。首先利用净信号分析方法得到校正样本和待测样本的净信号,然后用待测样本净信号和校正样本净信号之间的欧式距离作为样本相似性判据,选取一定数量的与待测样本最相似的校正样本组成局部校正子集,建立局部PLS回归模型。针对一组猪肉近红外光谱数据集的实验结果表明,该方法的预测精度显著优于全局建模方法和基于光谱欧式距离的局部建模方法。 相似文献
7.
基于DPLS特征提取的LDA方法在玉米近红外光谱定性分析中的应用 总被引:4,自引:0,他引:4
提出了一种基于DPLS+LDA的玉米近红外光谱定性分析新方法.该方法在训练时,首先用包含30个玉米品种每个品种20个近红外光谱样本的训练集进行DPLS回归,确定最佳DPLS主成分数为28;然后对训练集光谱进行DPLS特征提取后再进行LDA分析,确定最佳LDA主成分数为26,并提取LDA特征.识别时,测试样本经过DPLS... 相似文献
8.
凭借高效、无损和环保的优点,近红外光谱在多个领域广泛用作物质快速分析方法的同时,仍面临着光谱标定模型生命周期短,构建仪器标定迁移方法的标准样品难以获得和保存等问题.在化学计量学文献中,迁移方法通常能够矫正主从仪器之间的光谱差异,但绝大多数方法都需要在两台仪器相同条件下测量一组迁移标准样品.虽然样品数目不必过多,但总体上... 相似文献
9.
提出了一种基于近红外(NIR)光谱的黄酮类提取物抗氧化活性计算预测新方法。采用1,1-二苯-2-苦肼基(DPPH)法测定28种黄酮类中药材提取物的抗氧化活性,并在4 000~10 000 cm-1范围扫描样品的红外光谱,采用偏最小二乘(PLS)算法建立了黄酮类组分近红外光谱与抗氧化活性之间的校正模型。建模过程中,以交叉验证相关系数(R2),交叉验证误差均方根(RMSECV)为指标,确定了用于建模的最优近红外波段和光谱预处理方法。校正模型的RSECV为9.50%,R2为 0.901 7,预测误差均方根(RMSEP)为14.8%。该方法快速无损、操作简便,可用于中药及天然产物提取物抗氧化活性的快速评价。 相似文献
10.
近红外光谱与烟草样品总糖含量的非线性模型研究 总被引:27,自引:5,他引:27
针对烟草样品的近红外 (NIR)光谱与其总糖含量非线性相关的特点 ,提出了一种混合算法用于建立近红外光谱的非线性模型。该算法结合了偏最小二乘法 (PartialLeastSquare ,PLS)算法和人工神经网络(ArtificialNeuralNetwork ,ANN) ,把模型分成两个部分 :线性部分与非线性部分 ,并分别进行建模。与传统的多元校正算法PLS ,主成分回归 (PrincipleComponentRegression ,PCR) ,非线性PLS(NonlinearPLS ,NPLS)等相比 ,该混合算法所建的非线性参数模型的预测结果有明显的改善 ,从而为建立非线性模型提供了一种快速、准确的算法 ,可用于烟草样品总糖含量的定量分析。 相似文献
11.
目前常用的盐酸左氧氟沙星注射液含量的测定方法是高效液相色谱法,但此法不能应用于在线分析。文章利用近红外光谱分析技术分别与偏最小二乘(PLS)以及人工神经网络(ANN)的方法相结合,对同一厂家的35个不同批号的针剂样品分别建立了定量校正模型,并对随机抽取的12个样品进行了预测。首先,利用PLS的方法建立模型,得出模型的决定系数 (R2)和预测集样本的标准偏差(RMSEP)分别为0.964和0.242 8,同时利用小波变换技术对光谱变量进行了高效的压缩,并利用了前馈神经网络建立了盐酸左氧氟沙星针剂的定量分析模型, 利用该模型所得的R2和RMSEP分别为0.944和0.572 2。文章详细比较了两种方法的建模过程,相关参数选取的优化方法,实验结果令人满意,从比较结果来看,PLS方法略优于ANN方法,可以快速准确的给出该针剂的含量,具有无损,简单,快捷的特点,为近红外光谱技术应用于针剂的定量检测提供了一个新的有效方法。 相似文献
12.
近红外光谱检测已被应用于水泥生料成分的快速检测,但现场环境中的湿度等因素会对光谱产生干扰,从而降低检测精度。为了提高检测精度,在实验分析湿度对水泥生料近红外光谱检测影响的基础上研究了补偿方法。在水泥厂选取了24份水泥生料样本,其中18份作为校正集,6份作为验证集;水泥生料中的有效成分为SiO2,Al2O3,Fe2O3和CaCO3,各成分含量的标准值由X射线荧光光谱分析测出。首先,将校正集的18份样本每份重复装样测5次光谱,用得到的90个光谱建立模型Ⅰ;再每份样品制作5个湿度梯度样本,其获得过程为,先将样本放置在电加热平台上,用玻璃棒将样本摊平,180℃下加热30 min,再将样本放置在散热片上进行降温,待样品恢复室温后取出进行第一次光谱扫描,得到1个光谱,将测量后的样本放入搅拌器,使用装有去离子水的喷雾器对其喷雾两次,然后搅拌30 s混合均匀,测量混合后的样本得到下一个光谱,重复该过程,得到具有湿度梯度的5个光谱。所有样本均采用烘干法进行湿度测量,样本湿度变化区间在0.6%~2%以内。对每个湿度梯度的样本测量1次,用得到的这90个光谱建立模型Ⅱ。然后,将验证集的6份样本每份制作5个湿度梯度,获取方式与校正集相同,对每个湿度梯度的样本测量1次,得到30个光谱。所有光谱均采用多元散射校正预处理,拟合波段选择4000~5000 cm^-1,建模方法采用偏最小二乘法。比较同一份样本的5个湿度梯度,可以看到在5200 cm^-1处光谱差异最大,在其他位置也有肉眼可见的明显差异,因此,湿度变化对全波段光谱有明显的影响。最后,将这30个光谱输入模型Ⅰ与模型Ⅱ进行验证,并对比模型Ⅰ与模型Ⅱ的预测均方根误差RMSEP。模型Ⅱ中SiO2,Al2O3,Fe2O3和CaCO3的预测均方根误差RMSEP比模型Ⅰ分别减小了25%,31.3%,33.3%和25%。实验结果表明,水泥生料样本湿度对近红外光谱模型的预测结果具有一定的影响,采用具有湿度梯度的样本进行建模可有效降低湿度对预测结果的影响。 相似文献
13.
提出了一种基于偏最小二乘增量式神经网络的近红外光谱定量分析模型。该模型采用典型三层反向传播神经网络(BPNN),不同波长吸光度和成分浓度是模型的输入和输出。在使用历史样本训练之前先进行偏最小二乘(PLS)回归,所得自变量和因变量的历史负荷矩阵分别用于确定模型输入层和输出层的初始权值,且自变量的主成分个数作为隐层的节点数。当获得新的样本时,对新数据与历史负荷矩阵组合后进行PLS回归,将所得新的负荷矩阵与历史负荷矩阵融合后作为模型输入层和输出层新的初始权值,接着使用新样本对模型进行训练来实现增量式更新。将所提模型与PLS、BPNN、基于PLS的BPNN、递归PLS在天然气燃烧烟气近红外光谱数据上测定后比较。对于烟气中二氧化碳浓度的预测,所提模型的预测均方根误差(RMSEP)分别降低了27.27%,58.12%,19.24%和14.26%;对于烟气中一氧化碳浓度的预测,所提模型的RMSEP分别降低了20.65%,24.69%,18.54%和19.42%;对于烟气中甲烷浓度的预测,此模型的RMSEP分别降低了27.56%,37.76%,8.63%和3.20%。实验结果表明,所提模型不仅通过PLS对BPNN结构和初始权重的优化,使模型具有较强的预测能力,而且能在已建模型信息的基础上,不访问旧数据而用新增样本即可完成自身的增量式更新,从而使模型具有较好的稳健性和泛化性。 相似文献
14.
近红外光谱技术快速识别针叶材和阔叶材的研究 总被引:1,自引:0,他引:1
对一种针叶材和一种阔叶材的横切面采集波长范围为780~2 500 nm的近红外漫反射光谱,结合偏最小二乘判别分析法(PLS-DA)对针叶材杉木和阔叶材桉树快速识别的可行性进行了研究,结果表明:(1)利用近红外光谱结合PLS-DA法建立的识别模型对建模样品的识别正确率达到100%,识别模型预测的分类变量值与实际值之间相关系数r达到0.99,SEC为0.07;(2)即使采用短波区域780~1 100 nm的近红外光谱也可以获得理想的识别结果(识别正确率为100%),识别模型的r也达到0.99,SEC为0.07;(3)利用近红外光谱建立的识别模型对未知样本的识别正确率都为100%,说明近红外光谱技术可以快速、准确识别针叶材和阔叶材,这为木材识别提供了一种新方法和技术,也为开发低成本的近红外光谱识别仪器提供了科学依据。 相似文献
15.
石油作为重要战略资源,对其组分进行实时分析检测在石油化工领域有着重要意义.随着石油资源的不断开发,在已长时间开采油井的生产过程中以及新油井开采前,需要对井下原油组分进行分析检测,以判定开采的必要性.原油组分实时检测,在原油开采、生产、储运以及销售过程中都起着关键的作用,针对传统检测方法存在精度低、效率低等问题,近年来在... 相似文献
16.
近红外漫反射光谱法快速鉴别石斛属植物 总被引:2,自引:0,他引:2
通过采集15种石斛171份样品的近红外漫反射光谱,结合化学计量学统计分析方法建立预测模型,对不同种石斛进行快速无损鉴别。应用Hotelling T2对随机抽取的5份样品的近红外光谱进行稳定性分析,结果表明,样品的近红外光谱具有较好稳定性。设计正交试验L24(2×4×3×8),对光程类型、光谱波段、导数和平滑四个因素进行优化处理。利用主成分分析对正交试验结果进行分析,结果显示,选择6 500~4 000cm-1的光谱波段,采用多元散射校正、二阶导数和Norris平滑对光谱预处理,提取的主成分数为7时,光谱判别正确率为100%。将正交试验优化条件作为偏最小二乘法判别分析的输入值,随机选取123份样本作为校正集建立预测模型,其余48份样本为预测集,评估预测模型的性能。结果表明,该模型前3个主成分累积贡献率为99.36%,设定鉴别标准偏差为±0.1时,该方法的正确识别率为97.92%,获得满意的结果。该方法的建立为不同种石斛的快速鉴别提供了一种新的方法,同时为药用植物的鉴别提供参考。 相似文献
17.
应用近红外光谱技术并结合化学计量学建立杜仲中松脂素二葡萄糖苷(PDG)和京尼平苷酸(GPA)含量测定模型。以积分球漫反射方式采集近红外光谱数据,应用一阶微分、多元散射校正(MSC)等优选光谱数据预处理方法和竞争自适应加权采样(CARS)筛选最优波长变量,采用偏最小二乘法(PLS)和交叉验证法建立PDG和GPA的定标模型。PDG和GPA的定标模型显示出良好的预测效果,其校正集的相关系数分别为0.961 5和0.958 3,交互验证均方差分别为0.001 5和0.006 4。表明此快速预测模型准确可靠,适合快速测定杜仲中的PDG和GPA,为杜仲质量控制在线化提供了新思路。 相似文献
18.