首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the temporal relaxation of the electron component of weakly ionized, anisothermal and collision dominated plasma in the molecular gases hydrogen and nitrogen after jump-like switching off of the electric field starting from stationary states. The investigation is based upon a solution of the non-stationary Boltzmann equation using a finite difference approach of the resulting partial differential equation. Besides the temporal development of the energy distribution and of some macroscopic quantities of the electrons especially the characteristic relaxation times and their physical nature are discussed and compared with former results on the relaxation in an inert gas plasma.  相似文献   

2.
The impact of individual collision processes on the relaxation of the velocity distribution function of a group of electrons, initially localized in a narrow region at relatively high energies, has been studied. By having recourse to solutions of the non-stationary Boltzmann equation and to corresponding Monte-Carlo simulations, the temporal behaviour of electrons in CO2 plasmas, both in the absence and the presence of an external dc field, has been investigated. A microphysical interpretation of observed relaxation phenomena, based on the data relevant to the individual collision processes, is also given.  相似文献   

3.
In this second part of the in [l] started paper the results of microphysical determined collision frequencies of the electrons for the excitation and ionization of metastable molecules, excited in electronic states, and of the energy loss rates of the electrons due to elastic collisions, vibrational excitation, electronic excitation, dissociation and ionization of the molecules in a N2 - H2 -plasma are represented and discussed. These investigations are related to a low ionized, homogeneous and stationary plasma in a mixture and are performed for the range 6- 100 V/(cm Torr) of the reduced electric field strength and for any composition of the N2 - H2-mixture.  相似文献   

4.
Starting from former investigations of pure Ar? Hg mixture plasmas in parameter ranges typical of fluorescent lamps we studied the influence of additional admixtures of molecular gases (N2, H2) on the energy transfer from the electrons heated by an electric field to the lowest excited states of Hg atoms which are the energy source for the resonance radiation production. By calculation of the different power loss rates via solving the appropriate Boltzmann equation for three component mixture plasmas it was found that already a threshold level of molecular impurities of about 10?4 Torr leads to a marked energy dissipation by the impurities and thus to a pronounced reduction of the efficiency of the resonance radiation production. This is caused by the great effectivity of vibrational excitation of molecules in electron collisions due to the great cross sections for such collisions and their low thresholds.  相似文献   

5.
On the basis of the time-dependent electron Boltzmann equation the temporal relaxation of the electrons in the presence of electric and magnetic fields in weakly ionized, collision dominated plasmas has been studied. The relaxation process is treated by using a strict time-dependent two-term approximation of the velocity distribution function expansion in spherical harmonics. A new technique for solving the time-dependent electron kinetic equation in this two-term approximation for arbitrary angles between the electric and magnetic fields has been developed and the main aspects of the efficient solution method are presented. Using this new approach and starting from steady-state plasmas under the action of time-independent electric fields only, the impact of superimposed DC magnetic fields on the electron relaxation is analyzed with regard to the control of a neon plasma. The investigations reveal an important effect of the magnetic field on the temporal relaxation process. In particular, it has been found that the relaxation time of the electron component with respect to the establishment of steady-state can be enlarged by some orders of magnitude when increasing the magnetic field strength  相似文献   

6.
7.
For the low ionized anisothermal plasma in a mixture of moleculare nitrogen and molecular hydrogen the isotropic part of the velocity distribution function of the electrons is calculated and compared with the experimentally determined velocity distribution. the calculation of this distribution is performed by the help of the homogeneous and stationary electron Boltzmann-equation and takes into consideration all essential collision processes between the electrons and the N2 and H2 molecules. Furthermore, the calculated results of the mean energy, of the transport coefficients, of the collision frequencies for dissociation and direct ionization of the molecules, of the first Townsend coefficient of the molecules and of the collision rates for the direct ionization of the N- and H-atoms in the mixture are represented for the range 6–100 V/(cm Torr) of the reduced electric field strength and for any composition of the N2-H2 mixture.  相似文献   

8.
Collision Dominated Relaxation of the Electron Ensemble in a Plasma with Additional Heating by an Electric Field. I. Characteristic Times for the Transition to Stationary States Starting from time dependent Boltzmann equation for electrons the time development of the isotropic part of the distribution function and of macroscopic quantities as mean energy, mobility, excitation frequency and energy transfer quotients during transition between two stationary states are determined. The computation is referred to weak ionized neon plasmas which are typical for low pressure and for medium pressure discharges. As a result of this investigations we get informations about the characteristic relaxation times which are different in order of magnitude, and about their dependence of the processes of energy transfer. The energy transfer quotients which determine the energy loss by different collision processes in consideration are found to be suitable quantities to characterize the relaxation times.  相似文献   

9.
The investigation of the impact of the vibrationally excited molecules in the electronic ground state was performed by simultaneously solving a balance equation system for the main charge carriers, the H atoms, the metastable H atoms, the H2 molecules in the different vibrational states and for the power transfer of the electrons in the beam discharge mixture plasma. The balance equations for the vibrational states include in particular one-quantum step excitation and deexcitation, electronic excitation, dissociation and ionization from each vibrational level in electron collisions as well as the finite life time of these states because of the gas transfer through the band-like plasma. A main finding is that due to the additional impact of vibrationally excited molecules there is a marked enhancement of the resulting dissociation and ionization degree in the beam discharge plasma at medium power input from the turbulent electric field. For discharge parameters of practical interest the ionization and dissociation budget, the population of the vibrational states, the different energy dissipation processes and the energy pumping into the ladder of the vibrational states were calculated and discussed in detail.  相似文献   

10.
It is well known that the electron impact cross sections for elastic and inelastic processes for the vibrationally and electronically excited molecules are predominantly different than those for molecules in the ground state. Collisions of low energy electrons with excited molecules play an important role in explaining the behavior of gas discharges in laser and plasma physics, in planetary atmospheres, stars, and interstellar medium and in plasmas widely used in the fabrication of microelectronics. This explains as to why there is a need for having validated sets of electron impact cross sections for different processes. This work reviews the subject of electron collisions with vibrationally and electronically excited molecules in a comprehensive way. The survey has been carried out for a few excited molecules such as H2, D2, T2, HD, HT, DT, N2, O2, and CO2.  相似文献   

11.
A number of processes in which highly excited states of atoms and molecules participate are investigated. These processes are of interest for the kinetics of a low-temperature plasma, for atomic and molecular spectroscopy, and for astrophysics. A quasiclassical theory is developed for transitions between Rydberg states with change of the principal quantum number, and also for the processes of direct and associative ionization of highly excited atoms, which result from collisions between a neutral particle and its atomic core. The state of the inner electrons of a quasimolecular (molecular) ion is not altered by transitions of the outer electrons. Specific calculations are carried out for the case of the collision of hydrogen H(n) with helium He (1s2) atoms. It is shown that the cross sections and the rate constants of these processes are determined in this case by the mechanism investigated in the paper, and not by scattering of the Rydberg electron by the neutral particle. The cross sections for dipole excitation and dissociation of molecular ions from high vibrational energy levels by electron impact is calculated in the Born-Coulomb approximation. The cross sections and the rates of dissociative and three-particle attachment of electrons to ions are determined. The processes of autoionization and autodissociation decay of Rydberg states of vibrationally excited molecules are determined. Also investigated are radiative transitions near the dissociation limit of diatomic molecular ions and neutral molecules, viz., photodissociation and radiative decay of high vibrational levels, and photodissociation and translational (inverse-bremsstrahlung) absorption in collision of atomic particles.Translated from Trudy Ordena Lenina Fizicheskogo Instituta im. P. Lebedeva AN SSSR, Vol. 145, pp. 80–130, 1984.  相似文献   

12.
13.
Collisional relaxation was probed by CO2 laser activated delayed fluorescence. The experimental information was adopted to determine the average energies transferred per collision (ΔE) from highly vibrationally excited polyatomic molecules to parent collider. The values of (ΔE) decreased with increasing the number of atoms in the excited molecules in line: biacetyl, acetophenone, benzophenone, antraquinone. The dependences of (ΔE) on the number of factors such as: 1) the average vibrational energy residing in the vibrational modes of excited molecules; 2) the potential of intermolecular interaction; 3) the reduced mass, and others were analyzed in details. The general interplay was noticed between (ΔE) and the molecular parameters which determined the increasing interaction strength and the decreasing energy transfer efficiency due to the adiabatic constraints on the energy transfer.  相似文献   

14.
We adopted laser Thomson scattering for measuring the electron density and the electron temperature of microwave plasmas produced in helium at the pressures higher than the atmospheric pressure. The electron density decreased while we observed the increase in the electron temperature with the pressure. These are reasonable results by considering the decrease in the reduced electric field, the dominant loss of electrons via three‐body recombination with helium as the third body, and the production of electrons with medium energy via heavy particle collisions at the high gas pressure. The temporal variation of the electron temperature had the rise and the fall time constants of approximately 10 ns. The rapid heating and cooling of the electron temperature are due to the fast energy transfer from electrons to helium because of the high collision frequency in the high‐pressure discharge. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The paper deals with the impact of intensive electron attachment on the kinetics of the electrons in the active zone of the stationary band-like beam discharge plasma in SF6 which is an alternative useful plasma medium for “dry etching”. The energy distribution of the electrons in this plasma was obtained by numerically solving the Boltzmann equation which includes apart from elastic collisions, different exciting collision processes, attachment in electron collisions, direct ionization, the ambipolar loss of electrons, Coulomb interaction between electrons and of electrons with ions and the power input to the electrons by the turbulent electric field. In particular, due to the needed fulfilment of the consistent electron particle balance, for an extended region of the turbulence energy density in this plasma a large impact on the electron kinetics of the intensive electron attachment, which is the prevailing electron loss process, was found enforcing independent of the turbulence energy density always a large power input to the electrons, smooth and only slowly decreasing energy distributions even in the energy region of direct ionization.  相似文献   

16.
Electron energy distribution functions in rf molecular plasmas have been calculated by solving the time dependent Boltzmann equation in the presence as well as the absence of vibrationally and electronically excited molecules and thus of first kind and second kind (superelastic) collisions with them. The results, which refer to a model plasma composed by three components (the ground state, a lumped vibrational state and a lumped electronic state), show that these collisions with vibrationally and electronically excited molecules strongly affect the modulation of the electron energy distribution function and related quantities.  相似文献   

17.
Starting from former investigations concerning the collision dominated relaxation of the electron component in weakly ionized inert gas plasma we generalize the results obtained. Also in the present paper we use the same adaquate kinetic equation for the electron energy distribution function. On one side the influence of non-stationary, analytically given initial energy distributions on the relaxation behaviour and on the resulting adjustment time of stationary states was investigated. On the other side the calculation, especially of the adjustment time, was extended to a whole variety of final stationary states ranging from those determined only by energy loss due to elastic collisions to those determined only by exciting collisions. The adjustment time obtained varies by about four orders of magnitude within this wide range of final stationary states.  相似文献   

18.
The Result of Measurements of the energy distribution of thermal electrons in a midlatitude ionosphere is presented. A comparison is made in particular between the characteristics at sunrise and sunset periods because of the effect of vibrationally excited nitrogen molecules. At sunrise the distribution has a little-irregularity but the middle and higher energy parts (0.2-0.5 eV) deviate from the Maxwellian distribution only slightly at all heights. The electron temperature varies from 900 K to 1300 K between 130 km and 300 km. These values are higher than the kinetic temperature of neutral particles but comparable with the theoretical values of the vibration temperature of N2. At sunset small bumps due to non-thermal electrons are seen on the high energy tail between 108 and 160 km, their density being from 5 × 10?3 to 1 × 10?2 of that one of the thermal electrons. Above 170 km (F-layer) the deviation of the distribution from the Maxwellian one becomes smaller. The electron temperature varies from 500 K to 900 K between 100 km and 220 km. These values are higher than the kinetic temperature but lower than the theoretical values of the vibration temperature of N2. A mechanism of the appearance of non-thermal electrons is considered to be due to super-elastic collisions with vibrationally excited N2.  相似文献   

19.
Abstract

Intensities and decay rates of delayed fluorescence initiated by CO2 laser excitation of the triplet-state molecules are used to probe collisional relaxation of vibrationally excited polyatomic molecules. Collisional efficiencies for large polyatomic molecules are found not to exceed the value of 10?2-10?3 even in most favourable case of vibrational energy exchange in collisions between parent molecules. At intermediate levels of excitation (1500—12000 cm?1) the average energies <ΔE> transferred per collision with polyatomic molecules increase as vib>rn, where m≥2, and decrease with increasing numbers of atoms in the excited molecules.  相似文献   

20.
H. Saleem 《Physics letters. A》2011,375(44):3877-3879
The flow of electrons and ions with the same sheared velocity introduces new type of electrostatic drift waves and instabilities due to non-uniform zero-order current in plasmas having stationary dust. One of the modes is flute-like and the other also includes ions motion parallel to the background magnetic field. This investigation has applications in the phenomena of solar wind interaction with the dusty plasmas of planets and comets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号