首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultra-oriented polyethylene fibers obtained by drawing to approximately 30 times their original length have a Young's modulus of approximately 800 kbar. Such fibers, if unconstrained, contract on heating to a length near the original. We have studied the forces causing this contractile behavior by monitoring the stress in the fiber while maintaining it at constant length. In the course of this we observed a complex sequence of both reversible and irreversible behavior. In the reversible case we observed first energy and then entropy elastic behavior. The most significant feature observed is that at sufficiently high temperature the fiber stress relaxes to an unmeasurably low value. A fiber allowed to relax in this way possesses a much lower room temperature tensile modulus (ca. 80 kbar) immediately after relaxation but, remarkably, this modulus increases to approach the initial high value over a period of a few hours when the fiber is stored either clamped or unclamped at room temperature. High x-ray orientation is preserved throughout the storage period but the density which dropped during the stress decay rose again in the course of the spontaneous stiffening. None of the stress relaxed fibers displays large-scale contractile behavior on subsequent heating. A phenomenological composite model is proposed which involves stiff microfibrils of short length—surrounded by a matrix present as a minority component. The softening of this matrix on heating and its subsequent stiffening on storage, involving a certain amount of melting and recrystallization, respectively, could then be responsible for the observed variations in the macroscopic tensile properties using simple fiber composite theories. The fibers are likely to be of extended-chain type produced by the initial drawing while the matrix may consist of a combination of oriented amorphous material (tie chains), randomly oriented chains, and transverse lamellar overgrowth present in varying proportions in the different stages of sample treatment. The wider implications, fundamental and practical, of this remarkable self-hardening process are indicated.  相似文献   

2.
A fiber composite model of highly drawn polyethylene is presented. Quantitative predictions and calculations are made using shear-lag theory. The drawing process is shown to occur in two stages, a neck and a postneck taper. It is shown that there is an empirical linear relationship, with a high correlation, between the parameter x in shear-lag theory (which involves the aspect ratio of the reinforcing elements and the square root of the ratio of matrix shear modulus to the Young's modulus of the reinforcing elements) and the 3/2 power of the taper draw ratio. It is concluded that crystalline fibrils (the reinforcing elements) deform homogeneously during the secondary, taper drawing process. The increase in aspect ratio resulting from this homogeneous deformation is held to be responsible for the increase in tensile modulus owing to the increased efficiency of the fibrils as reinforcing elements. The model is also used to explain the self-hardening process exhibited by these fibers and, using measurements of density of hardened fibers, to predict that immediately after the neck the aspect (length to diameter) ratio of the crystalline reinforcing elements is ca. 2 and that the shear modulus of the matrix material in as-drawn fibers is ~103N/m2 and does not change significantly during the taper-drawing process.  相似文献   

3.
4.
Dynamic mechanical and single step stress relaxation data are presented for a highly oriented linear polyethylene rod as produced by a high pressure extrusion technique. The results indicate that both major relaxation processes normally observed in unoriented polyethylene are virtually absent in torsion, whereas they are present in flexure. Stress relaxation in torsion data show a very highly nonlinear behavior when compared to similar data for an unoriented polyethylene rod.  相似文献   

5.
闫寿科 《高分子科学》2011,29(4):513-519
The crystalline structure and morphology of the PLA crystallized isothermally from the glassy state on highly oriented PE substrates at 130℃were investigated by means of optical microscopy,AFM and X-ray diffraction.The results indicate that the PE substrate influences the crystallization behavior of PLA remarkably,which leads to the growth of PLA crystals on PE substrate always in edge-on form rather than the twisted lamellar crystals from edge-on to flat-on when crystallizing the PLA on glass surface under the same condition.The edge-on PLA lamellae on the PE substrate are preferentially arranged with their long axes in the chain direction of the PE substrate crystals.It is further demonstrated that except for the different crystal orientation,the PE does not influence the crystalline modification and crystallinity of the PLA.  相似文献   

6.
High density polyethylene was biaxially oriented by high-pressure forging and subsequently low-pressure thermal forming. The permeability of O2, CO2, and CH4 was reduced slightly by biaxial orientation, the diffusivity of the gases was found to increase with the degree of orientation. The solubility decreased markedly with orientation. Density measurements indicated that crystallinity increases with the extent of biaxial deformation. Based on the concept of particle flow in viscous media, the variation of gas diffusivity with orientation is viewed as a frictional resistance effect. The diffusivity is inversely proportional to a phenomenological friction coefficient; which can be related to orientation by a shape factor s. The diffusivity for the oriented state, D, is then related to that of the nonoriented state, D0, as D = D0/(1 + s?). The variation of diffusivity selectivity with orientation is also formulated based on this consideration. Results on both biaxially and uniaxially oriented HDPE are examined in light of this model.  相似文献   

7.
Measurements have been made of the low-frequency Raman longitudinal acoustic mode (LAM) vibration in oriented linear polyethylenes. The oriented samples were prepared by tensile drawing of both slow-cooled and quenched sheets, and included ultrahigh-modulus materials from draw ratios up to 30. A LAM line is observed clearly in samples of low and intermediate molecular weight up to draw ratios of ca. 15. In all these cases the Raman spectrum has been used to calculate the whole distribution of crystal sizes. This procedure leads to values of the number-average and weight-average crystal size which are in good agreement with crystal size determinations by x-ray diffractometry and gel permeation chromatography on etched samples. At higher draw ratios the peak intensity of the LAM line is diminished. This can be attributed to a change in the distribution of crystal thicknesses, consistent with data from x-ray diffraction and nitric acid etching. Effects due to initial morphology, sample molecular weight, and draw temperature have also been examined.  相似文献   

8.
The annealing behavior of amorphous i-PMMA thin films on highly oriented HDPE substrates was studied by transmission infrared spectroscopy and electron diffraction. The i-PMMA thin film on highly oriented HDPE exhibits a much faster crystallization rate than usual, providing not only a good method for the preparation of crystalline i-PMMA thin and ultrathin film, but also the convenience to observe the crystallization process by infrared spectroscopy in situ. The overall crystallization kinetics of the i-PMMA thin film on the highly oriented HDPE layer was also explored in this work, and an Avrami exponent of about 2 was obtained. The accelerated crystallization behavior indicates a special interaction between HDPE and i-PMMA, which favors the nucleation and crystallization of i-PMMA. This special interaction leads also to an oriented alignment of i-PMMA on the HDPE substrate with both polymer chains parallel, i.e., the occurrence of heteroepitaxy, which could be verified by the polarized infrared spectra and electron diffraction pattern. Electron diffraction analysis further demonstrated that the contact planes of this epitaxial system are (100) lattice planes of both polymers. This can be explained in terms of a two-dimensional lattice matching.  相似文献   

9.
The influence of drawing, gamma irradiation and accelerated aging on the dielectric relaxation of low-density polyethylene has been studied using dielectric loss tangent measurements in the temperature range from 25 to 325 K and in the frequency range from 103 to 106 Hz. The intensity, position and activation energy of the γ- and β-dielectric relaxations were found to be strongly dependent upon the changes in the microstructure of the amorphous phase induced by uniaxial orientation, oxidation and crosslinking.  相似文献   

10.
常海波  闫寿科 《高分子科学》2013,31(8):1173-1182
The crystallization behavior of poly(ethylene adipate) (PEA) on highly oriented high-density polyethylene (PE) substrate both from solution and isotropic melt was studied by means of optical microscopy, differential scanning calorimetry, atomic force microscopy and electron diffraction. The results show that the PE influences the crystallization of PEA strongly, which results in an epitaxial growth of PEA with well ordered structure. At the boundary of the PE substrate, a transcrystalline PEA layer is observed. Fine structural observation illustrates that the PEA grows on the PE substrate in edge-on lamellae with fixed orientation. Electron diffraction demonstrates that the epitaxial organization of PEA on PE occurs with both polymer chains parallel, which leads to the (00l) PEA diffractions inclined ±23.5° to the chain direction of PE crystals. Combining the real space morphological observation and electron diffraction results, it is concluded that the epitaxial PEA edge-on lamellae are folded in the {00l} lattice planes.  相似文献   

11.
The deformation of polyethylene in terms of structural processes has been investigated by low-and wide-angle x-ray diffraction in the case of low-density and, to a lesser extent, high-density polyethylene. The samples possessed a range of simple textures which enabled the deformation processes to be identified. The results are interpreted in terms of a model of stacks of lamellae which have axes along the original draw direction and which deform by lamellar slip, chain slip, and lamellar separation. In most cases these processes accounted for the macroscopic strain but in some cases discrepancies were observed which could be accounted for by inhomogeneous deformation or by the effects of a distribution of lamellar thicknesses. Attempts were made to identify fibrillar slip, without success. The relative contributions of the various deformation processes are examined as a function of temperature and sample treatment by defining a compliance constant for each process. Below room temperature, the results are consistent with expectations based on the α and β mechanical relaxations, whereas the unusual effects at high temperatures are attributed to gradual melting. The compliance constants are also found to depend on the annealing temperature of the sample, and are used to predict the mechanical anisotropy. The volume changes accompanying lamellar separation are examined. They were less than expected in low-density polyethylene, but satisfactory agreement was obtained in high-density polyethylene. A general relation is suggested between volume changes and the lateral development of the lamellae. Hence in narrow lamellae the interlamellar layer can contract laterally whereas the greater constraints imposed by wide lamellae lead to void formation. Other effects examined include the reversibility of the processes which is most marked in the case of chain slip and which is explained by the presence of restoring forces in the amorphous regions including the fold surface. Finally, the differences between low- and highdensity polyethylene are highlighted, emphasizing the part played in the deformation by the amorphous component.  相似文献   

12.
The small-angle x-ray scattering (SAXS) intensity of highly-oriented, low-density polyethylene (LDPE) with fixed draw ratio has been investigated during several heating and cooling cycles. Using a three-dimensional, monoclinic, paracrystalline superlattice to describe the superstructure of the sample, it has been possible to calculate the SAXS patterns completely. A very large irreversible variation of the superstructure during the first heating cycle, and a smaller reversible variation of the average size and distance of the crystallites during subsequent temperature cycles, could be obtained. These results can be explained using the thermodynamic theory of crystallization of polymer multicomponent systems of Kilian.  相似文献   

13.
In this study, different modified polyethylenes with different molar masses and different modification rates were examined as compatibilizers to prepare high density polyethylene/organoclay nanocomposites. Nanocomposites having 5 wt % organo-modified clay and 20 wt % interfacial agent were prepared by melt blending. The effect of compatibilizer molar mass and polarity was investigated on the clay dispersion and on the gas barrier properties. It was observed that the amount of large and dense fillers aggregates was considerably reduced by introduction of an interfacial agent. The nanocomposite final morphology was governed by a diffusion/shear mechanism. A high degree of clay delamination was obtained with the high molar mass compatibilizers, whereas highly swollen clay aggregates resulted from the incorporation of the low molar mass interfacial agents. In the investigated nanocomposites series, the barrier properties could not be directly related to the clay dispersion state but resulted also from the matrix/clay interfacial interactions. A gas transport mechanism based on these both parameters was proposed to explain the barrier properties evolution in these low polar nanocomposites series. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2593–2604, 2008  相似文献   

14.
The tensile strength of oriented polyethylene filaments is discussed in relation to molecular weight. Short-term tensile properties at room temperature were obtained in our laboratory and from the literature for polymer samples covering the molecular weight (M w) range from 54 × 103 to 4 × 106, and polydispersities ranging from 1.1 to 15.6, oriented by solid-state extrusion, melt spinning/drawing, solution spinning/drawing, and “surface growth.” It was found that both the molecular weight and its distribution markedly affected tensile strength. The breaking stress σ of highly oriented fibers varied with molecular weight roughly as σ ∝, M0.4, at constant M w/M n over the entire range studied. Reduction of polydispersity from 8 to 1.1 by an increase of M n with M w approximately constant at 105 increased tensile strength of oriented polyethylene filaments by a factor of nearly 2.  相似文献   

15.
Highly oriented linear polyethylene was prepared by elongational flow injection molding. The changes in crystal orientation were investigated as a function of temperature by real-time wide-angle X-ray diffraction. Additionally, the influence of molecular weight upon the microstructure and the changes in orientation, during heating near the melting point, and after cooling have been examined. A shish-kebab structure is inferred for the high molecular weight samples (Mw≥105) from SAXS observations, while for samples with Mw<105 only an oriented lamellar structure is found. Consequently, a higher thermal stability is shown by the higher molecular weight samples. Furthermore, a recovery of crystal orientation on rapid cooling of the samples from the melt is only observed for samples with Mw≥105. The results are discussed in terms of a preferential recrystallization of chain-folded lamellae, on cooling, onto the shish fibrils which survive at high temperature.  相似文献   

16.
Drawn and subsequently annealed polyethylene film was restretched along the original draw axis at various temperatures. The internal deformation was analyzed in terms of the structural parameters of a simplified model. The elementary deformations are the rotation of crystals around the b axis and shear at the crystal interface. The rigidity of the crystal plays an important role during extension; and as a result, disorientation of chains in the crystal occurs at high strain. At the same time, crystals deform in such a way that the crystalline chains tilt about the b axis along the (h00) plane. This deformation of the crystal is affected by temperature. The increase in long spacing with extension can be interpreted roughly by the changes in structural parameters. The strain in amorphous region in also discussed in relation to these parameters.  相似文献   

17.
18.
A quantitative study was undertaken of the anisotropy of low‐strain mechanical behavior for specially oriented polyethylene with controlled crystalline and lamellar orientation. The samples were prepared by the die drawing of injection‐molded rods of polyethylene and annealing. This produced a parallel lamellar structure for which a simple, three‐dimensional composite laminate model could be used to calculate the expected anisotropy. Experimental data, including X‐ray strain measurements of the lateral crystalline elastic constants, showed good quantitative agreement with the model prediction. The X‐ray strain measurements confirmed that the amorphous regions exert large constraints on the crystalline phase in the lateral directions, where an order of magnitude difference was found between the measured apparent lateral crystalline compliances in the lamellar‐stack sample and the expected values for a perfect crystal. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 755–764, 2000  相似文献   

19.
Nano-sized particles of platinum deposited on highly oriented pyrolytic graphite (HOPG) electrolessly (average sized = 3.4 nm) or electrochemically (d = 20 nm) and polycrystalline platinum are compared. The dispersed electrodes exhibit special features in the oxidation of ethylene glycol and adsorbed carbon monoxide. In particular, they reduce the overpotential of these processes. Possible reasons for the observed distinctions are discussed. The potential cycling leads to coalescence of nano-sized Pt particles on HOPG. As a result, their size distribution expands, and the distribution maximum shifts towards large sizes (d = 6.4 nm). This seriously complicates use of Pt/HOPG as a model electrode for investigating the size effect.  相似文献   

20.
Deformation bands formed at the yield point in tensile tests on oriented high-density polyethylene have been studied by optical microscopy and wide-angle x-ray (WAXS) diffraction. The observations of the rotation of the optical extinction direction are shown to obey a simple scheme proposed previously by us: the principal directions of the refractive index ellipsoid within the deformation bands are everywhere parallel to the principal axes of the plastic strain ellipsoid, zero strain referring to the isotropic state. This result is similar to that obtained previously for polyethylene terephthalate (PET) and polypropylene despite the much higher crystallinity obtained with polyethylene. Independent measurements of the molecular reorientation in the deformation bands made using wide-angle x-ray scattering broadly confirm the optical measurements. The results taken together suggest that the material within the band, whether crystalline or not, becomes realigned about the new direction of maximum elongation as if controlled by the deformation of an effective molecular network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号