首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The preparation and thermal behaviour of two garnets of the type {Na3}[MIII2]·(As3)O12 (MIII = Cr, Fe) are described. Both compounds undergo a reversible conversion into a high-temperature phase which, for the case of MIII = Ga, is found as the sole structure type. There is no mixed-crystal formation between {Y3}[Fe2](Fe3)O12 and {Na3}[Fe2] · (As3)O12 Preliminary investigations were performed on the possible mixed-crystal formation between the Ga compound and the Cr and Fe garnet structure, respectively.  相似文献   

2.
I.R. Spectra of Some Double Oxides of the Type Te3MIVO8 The infrared spectra of the phases Te3MIVO8 (MIV = Ti, Zr, Hf, Sn), structurally related to fluorite, have been recorded and discussed. It is shown that all the observed have a complex origin, and it is not possible to assign them to definite vibrations of the metal-oxygen polyhedra present in the lattices.  相似文献   

3.
The reaction of an electron‐rich transition metal M (M = Ru, Rh, Ir), tellurium and TeX4 (X = Cl, Br, I) resulted in black crystals of five ternary coordination polymers with the general composition [MIII(Te6)]X3 (M = Rh, Ir) and of the molecular cluster compound [RuII2(Te6)](TeIIBr3)4(TeIIBr2)2. X‐ray diffraction on single‐crystals revealed that the compounds [M(Te6)]X3 crystallize isostructurally in the trigonal space group type R$\bar{3}$ c. In their crystal structures linear, positively charged [MIII(Te6)] chains form the motif of a hexagonal rod packing. In the chain, each of the formally uncharged Te6 molecules with chair conformation acts as a bis‐tridentate bridging ligand to two M atoms. The octahedrally coordinated M atoms are spiro atoms in the chain of trans vertices sharing heterocubane fragments. Including the isolated halide ions, which provide charge balance, the entire arrangement resembles a cut‐out of the α‐polonium structure type.In the monoclinic compound Ru2Te12Br16 (space group P21/n), the ruthenium atoms of the hetero‐cubane core of the molecular cluster [Ru2(Te6)](TeBr3)4(TeBr2)2 are saturated by terminal bromidotellurate(II) groups. Again, the Te6 ring is formally uncharged. With the tellurium atoms acting as electron‐pair donors the 18 electron rule is fulfilled for the M atoms in all compounds.  相似文献   

4.
The IR and Raman spectra of tellurates Ln3Te2Li3O12 (Ln=Pr…Lu, Y), Ca3Te2Zn3O12 and Na3Te2M3+3O12 (M3+ = Al, Ga, Fe) with the garnet structure are presented and discussed on the basis of a group theoretical analysis, and of 6Li—7Li isotopic frequency shifts. The assignment of the high-frequency bands to stretching vibrations of the TeO6 octahedra is only an approximation whose validity depends on the nature of the tetrahedral cation (Li, Zn or M3+) and of the symmetry properties of the vibrations: cationic mass effects play an important role in the antisymmetric, IR-active vibrations, whereas the bonding forces are the determining factor in the totally symmetric, Raman active vibrations. For the Na3Te2M3+3O12 garnets, the (TeO6) internal modes approximation is unacceptable since the stretching frequencies of the TeO6 and M3+O4 groups are of the same order of magnitude. No detailed assignments are available for the medium-frequency bands: they are due in part to the bending vibrations of the TeO6 octahedra, but the contribution of the tetrahedral cation Zn2+ or M3+ to this region of the spectrum remains largely unknown. The translational frequencies of the dodecahedral Ln3+ cations have been identified in the low frequency region (below 250 cm−1) by comparison of the frequencies of the Ln and Y garnets.  相似文献   

5.
Orange-colored crystals of the oxoferrate tellurate K12+6xFe6Te4−xO27 [x=0.222(4)] were synthesized in a potassium hydroxide hydroflux with a molar water–base ratio n(H2O)/n(KOH) of 1.5 starting from Fe(NO3)3 ⋅ 9H2O, TeO2 and H2O2 at about 200 °C. By using (NH4)2TeO4 instead of TeO2, a fine powder consisting of microcrystalline spheres of K12+6xFe6Te4−xO27 was obtained. K12+6xFe6Te4−xO27 crystallizes in the acentric cubic space group I 3d. [FeIIIO5] pyramids share their apical atoms in [Fe2O9] groups and two of their edges with [TeVIO6] octahedra to form an open framework that consists of two loosely connected, but not interpenetrating, chiral networks. The flexibility of the hinged oxometalate network manifests in a piezoelectric response similar to that of LiNbO3.The potassium cations are mobile in channels that run along the <111> directions and cross in cavities acting as nodes. The ion conductivity of cold-pressed pellets of ball-milled K12+6xFe6Te4−xO27 is 2.3×10−4 S ⋅ cm−1 at room temperature. Magnetization measurements and neutron diffraction indicate antiferromagnetic coupling in the [Fe2O9] groups.  相似文献   

6.
Two members of MIII2BP3O12 borophosphates, namely Fe2BP3O12 and In2BP3O12, were synthesized by the solid-state method and characterized by the X-ray single crystal diffraction, the powder diffraction and the electron microscopy. They both crystallize in the hexagonal system, space group P6(3)/m (no. 176) and feature 3D architectures, build up of the M2O9 units and B(PO4)3 groups via sharing the corners; however, they are not isomorphic for the different crystallographically distinct atomic positions. Optical property measurements of both compounds and magnetic susceptibility measurements of Fe2BP3O12 also have been performed. Moreover, in order to gain further insights into the relationship between physical properties and band structure of the MIII2BP3O12 borophosphates, theoretical calculations based on density functional theory (DFT) were performed using the total-energy code CASTEP.  相似文献   

7.
Compounds that are formed in the M 2 I O-Ga2O3-TiO2 system and crystallize in three structural types were prepared by solid-phase reactions. The M 2 I Ga2Ti6O16 (MI = Na, K, Rb, Cs) compounds were prepared for the first time. The thermal expansion coefficients of LiGaTiO4, Na2Ga2Ti6O16, K2Ga2Ti6O16, Rb2Ga2Ti6O16, and Cs2Ga2Ti6O16 were determined by high-temperature X-ray diffraction. Some tendencies of thermal distortions in M 2 I A 2 III Ti6O16 and LiAIIITiO4 (MI = Na, K, Rb, Cs; AIII = Al, Cr, Fe, Ga) were disclosed.  相似文献   

8.
《Solid State Sciences》2001,3(1-2):93-101
Dipotassium octaoxodecahydroxotetratellurate, K2[Te4O8(OH)10], has been prepared hydrothermally in acidic medium under autogenous pressure. It crystallizes in space group P21/c of the monoclinic system with Z=2 in a cell of dimensions a=5.592(1) Å, b=8.283(2) Å, c=16.255(3) Å, and β=99.62(3)°. The outstanding feature of the structure is a tetrameric [Te4O8(OH)10]2– anion built up from edge and corner sharing TeO6 octahedra. These anions and K+ cations are held together by electrostatic interactions and by hydrogen bonds. The compound decomposes in two steps at 350 and 420 °C, corresponding to a water and an oxygen loss, respectively, and affording the mixed valence oxide K2TeVI3TeIVO12.  相似文献   

9.
Structural Relationship of Potassium Hexahydroxoscandate(III), K3[Sc(OH)6] with the Isotypic Hydroxometallates Rb3[Sc(OH)6], K3[Cr(OH)6], and Rb3[Cr(OH)6] Ternary hydroxides M}MIII(OH)6{ with MI ? K, Rb and MIII ? Sc, Cr were obtained in the same way as K3[Cr(OH)6] [1] from alkali metal amides and d-metal nitrates by a comproportionation reaction of amide and nitrate ions in supercritical ammonia to elementary nitrogen and hydroxide ions at 523 K and 3 ≤ p(NH3) ≤ 6 kbar within 1 to 3 months. Their structures were determined by single crystal x-ray methods inclusive the positions of the hydrogen atoms. The ratio of size of r(MI)/r(MIII) is related to the symmetry of these hydroxometallates. Structural relationships between K3[Sc(OH)6] and Rb3[Sc(OH)6], K3(Cr(OH)6], Rb3[Cr(OH)6]) and K4[CdCl6] [4] are discussed.  相似文献   

10.
Tetragonal Fluoroperovskites AM0,750,25F3 Deficient in Cations: K4MnIIM2IIIF12 and Ba2Cs2Cu3F12 By heating 2KMnF3 + K2MnF6 and BaF2, CsF + CuF2 respectively, the isostructural tetragonal compounds K4Mn3F12 (a = 832.2, c = 1643.0 pm) and Ba2Cs2Cu3F12 (a = 854.1, c = 1704.1 pm) were prepared. They crystallize in a cation-deficient perovskite structure exhibiting ordering of octahedral vacancies. Single crystal structures determinations in the space group I41/amd, Z = 4, yielded the following average distances within the octahedra, which are Jahn-Teller distorted for MnIII and CuII:MnII? F = 208.3 pm, MnIII? F = 4 × 183.0/2 × 209.7 pm; Cu? F = 190.7/227.1 and 190.6/236.4 pm, respectively. The results are discussed in comparison with related compounds.  相似文献   

11.
The reaction products of the oxide sulphates of rare earths with hydrogen chloride are mixtures of chlorides MIIICl3 and chloride-sulphates MIIICl3 and chloride-sulphates MIIIClSO4. By oxidation of these mixtures, oxide sulphates MO2SO4 are formed as final products. Intermediary products are mixtures of MIIIOCl? MIIIClSO4.  相似文献   

12.
The First Oligomeric Anions of Fluoro-Litho Metallates with Octahedra Sandwich Motive: Cs4K{[F3MIIIF3]Li[F3MIIIF3]}, MIII = Ga, Fe Colourless single crystals of Cs4K{Li[Ga2F12]} ( A ) and Cs4K{Li[Fe2F12]} ( B ) have been obtained by solid state reaction from intimate mixtures of the corresponding binary fluorides (Pt-tube, 750°C, 40 d). The trigonal unit cells with ( A ) a = 631,3(1)pm; c = 3059,9(6)pm and ( B ) a = 635,0(1)pm; c = 3089,2(7)pm, respectively (Z = 3, Guinier-Simon data, Cu-Kα1), are confirmed by single crystal investigations. The compounds crystalize isostructural in the space group R3 m (No. 166). The structures were determined using four-circle diffractometer data (Siemens AED 2) with ( A ) R = 2.95%, 3627 Io and ( B ) R = 1.86%, 4179 Io, respectively (SHELX-76), and are characterized by triplets of facesharing octahedra parallel [00.1] with the cation-sequence MIII? Li? MIII, six of which are connected by [KF6]-octahedra via common corners and each triplet is surrounded by six different [KF6]-octahedra. The structure is completed by Cs+ filling the cavities. The Madelung Part of Lattice Energy (MAPLE), Mean Fictive Ionic Radii (MEFIR) and Effective Coordination Numbers (ECoN) are calculated and compared. The classification as lithometallate could be verified by a new MAPLE concept. The Charge Distribution (CHARDI) was calculated and compared with the results according to ‘bond length-bond strength’.  相似文献   

13.
On Hexagonal Perovskites with Cationic Vacancies. XVI. Rhombohedral 12 L-Stacking Polytypes Ba3AIIIM □O12 with MV = Nb, Ta The white quaternary oxides Ba3LaM□O12 with MV = Nb, Ta belong to the group of hexagonal perovskites with cationic vacancies. They crystallize in a rhombohedral 12 L-structure (sequence (hhcc)3; space group R3 m) with a = 5.751 Å; c = 28.11 Å (MV = Nb); a = 5.746 Å; c = 28.20 Å (Ta) and Z = 3. Signs for the formation of isotypic compounds with AIII = Pr, Nd could be obtained as well.  相似文献   

14.
Compounds with the composition Ba(M 2/3 III U1/3)O3 (MIII = Sc, Y, In, Nd-Lu) were synthesized by high-temperature solid-state reactions. The structures of the compounds were studied by X-ray diffraction analysis, including the high-temperature method, and IR spectroscopy.  相似文献   

15.
Four alkaline earth oxotellurate(IV) halides with common formula M3Te2O6X2 (M = Sr, Ba; X = Cl, Br) have been prepared as polycrystalline powders and/or in the form of single crystals. All compounds crystallize in the cubic space group Fd$\bar{3}$ m with cell parameters a = 15.9351(4) Å for Sr3Te2O6Cl2 (single‐crystal X‐ray data), 16.052(5) Å for Sr3Te2O6Br2 (powder X‐ray data), 16.688(2) Å for Ba3Te2O6Cl2 (single‐crystal X‐ray data) and 16.8072(3) Å for Ba3Te2O6Br1.64Cl0.36 (single‐crystal X‐ray data). The results of the crystal structure analyses reveal a rigid ${3}\atop{{\infty}}$ [M3Te2O6]2+ framework which can be described as being composed of regular octahedra of two types of chemically non‐bonded M6 octahedra that are capped by trigonal pyramidal [TeO3] anions located above every second face of one of the M6 octahedra. The halide X anions are situated in the voids of the ${3}\atop{{\infty}}$ [M3Te2O6]2+ framework. Dependent on the nature of the halogen, the anions show various kinds of occupational disorder which eventually led to a revision of the previous structure model of Ba3Te2O6Cl2. A comparative discussion with other structures of general formula M3Ch2O6X2 (M = divalent metal; Ch = Te, Se; X = Cl, Br) is presented.  相似文献   

16.
We describe the synthesis, structures and dielectric properties of new perovskite oxides of the formula, Ba3MIIITiMVO9, for MIII = Fe, Ga, Y, Lu and MV = Nb, Ta, Sb. While MV = Nb and Ta oxides adopt disordered/partially ordered 3C perovskite structures where MIII/Ti/MV metal-oxygen octahedra are corner-connected, the MV = Sb oxides show a distinct preference for the 6H structure, where SbV/TiIV metal-oxygen octahedra share a common face forming (Sb,Ti)O9 dimers that are corner-connected to the MIIIO6 octahedra. The preference of antimony oxides (SbV:4d10) for the 6H structure – which arises from a special SbV–O chemical bonding that tends to avoid linear Sb–O–Sb linkages unlike NbV/TaV:d0 atoms which prefer ~180° Nb/Ta–O–Nb/Ta linkages – is consistent with the crystal chemistry of MV–O oxides in general. The dielectric properties reveal a significant difference among MIII members. All the oxides with the 3C structure excepting those with MIII = Fe show a normal low loss dielectric behaviour with ε = 20–60 in the temperature range 50–400 °C; the MIII = Fe members with this structure (MV = Nb, Ta) display a relaxor-like ferroelectric behaviour with large ε values at frequencies ≤1 MHz (50–500 °C).  相似文献   

17.
The crystallization of complex phosphates from the melts of Cs2O-P2O5-CaO-MIII2O3 (MIII—Al, Fe, Cr) systems have been investigated at fixed value Cs/P molar ratios equal to 0.7, 1.0 and 1.3 and Са/Р=0.2 and Ca/МIII=1. The fields of crystallization of CsCaP3O9, β-Ca2P2O7, Cs2CaP2O7, Cs3CaFe(P2O7)2, Ca9MIII(PO4)7 (MIII—Fe, Cr), Cs0.63Ca9.63Fe0.37(PO4)7 and CsCa10(PO4)7 were determined. Obtained phosphates were investigated using powder X-ray diffraction and FTIR spectroscopy. Novel whitlockite-related phases CsCa10(PO4)7 and Cs0.63Ca9.63Fe0.37(PO4)7 have been characterized by single crystal X-ray diffraction: space group R3c, a=10.5536(5) and 10.5221(4) Å, с=37.2283(19) and 37.2405(17) Å, respectively.  相似文献   

18.
The structures of new phases Li6CaLa2Sb2O12 and Li6.4Ca1.4La2Sb2O12 have been characterised using neutron powder diffraction. Rietveld analyses show that both compounds crystallise in the space group la3?d and contain the lithium cations in a complex arrangement with occupational disorder across oxide tetrahedra and distorted oxide octahedra, with considerable positional disorder in the latter. Variable temperature neutron diffraction experiments on Li6.4Ca1.4La2Sb2O12 show the structure is largely invariant with only a small variation in the lithium distribution as a function of temperature. Impedance spectroscopy measurements show that the total conductivity of Li6CaLa2Sb2O12 is several orders of magnitude smaller than related lithium-stuffed garnets with σ=10−7 S cm−1 at 95 °C and an activation energy of 0.82(3) eV. The transport properties of the conventional garnets Li3Gd3Te2O12, Li3Tb3Te2O12, Li3Er3Te2O12 and Li3Lu3Te2O12 have been evaluated and consistently show much lower values of conductivity, σ≤4.4×10−6 S cm−1 at 285 °C and activation energies in the range 0.77(4)≤Ea/eV≤1.21(3).  相似文献   

19.
The complex formation with CH3O? of AsIII, SbIII, GeIV, NbIV, SeIV, TeIV, TiIV, SnIV and MoV has been investigated in absolute methanolic solutions containing (CH3)4NCl, LiCl, or Lithiumtosylate (μ = 1; 20.0°) by means of pH-titrations. The relations between the stoichiometry of the reactions and the shape of the buffer regions, as well as the concentration-dependance of these buffer regions are discussed.  相似文献   

20.
Mechanisms of formation of polyphosphates MeIII(PO3)3, where M III=La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, Fe, Ga, Al and Cr has been simulated by thermal analysis technique. MeIII oxides and ammonium dibasic phosphate (NH4)2HPO4 were used as starting materials. For M III=La-Lu, Y and Fe three main stages were observed: 1. elimination of water and ammonia leading to the formation of ammonium tripolyphosphate (NH4)5P3O10; 2. reaction of the latter with Me2IIIO3 and formation of acidic polyphosphates MeIIIH2P3O10 or their isomers MeIII(PO3)3·H2O; 3. final loss of water and formation of MeIII(PO3)3. For Me III=Sc and Ga the second stage is prolonged and the polyphosphates form at higher temperatures. Aluminum and chromium polyphosphates are unstable. It is suggested that thermal behavior of the compounds is determined by MeIII ionic radii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号