首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
[reaction: see text]. Palladium-catalyzed electrophilic allylic substitution of functionalized allyl chlorides and allyl acetates can be achieved in the presence of hexamethylditin under mild reaction conditions. The substitution reaction occurs with very high regioselectivity at the branched allylic terminus. Regioselective tandem bisallylation reaction could be performed by employing benzylidenemalonitrile as substrate. The reaction mechanism can be explained by involvement of a bisallylpalladium intermediate. A particularly interesting mechanistic feature of this reaction is that palladium catalyzes up to three different transformations in the same catalytic cycle. DFT calculations indicate that the regioselectivity is determined by the location of the allylic substituent in the eta1-allyl moiety of the reaction intermediate.  相似文献   

2.
Benzhydryl cations were used as reference electrophiles to determine the hydride donor reactivities of unsaturated hydrocarbons. The kinetics of the reactions were followed by UV-vis spectroscopy and conductivity measurements, and it was found that the second-order rate constants for the hydride transfer processes were almost independent of the solvents or counterions employed. The rate constants correlate linearly with the previously published empirical electrophilicity parameters E of the benzhydrylium ions. Therefore, the linear free energy relationship log k(20 degrees C) = s(E + N) could be employed to characterize the hydride reactivities of the hydrocarbons by the nucleophilicity parameters N and s. The similarity of the slopes s for hydride donors and pi-nucleophiles allows a direct comparison of the reactivities of these different functional groups based on their nucleophilicity parameters N. Since nucleophilicity parameters of -5 < N < 0 have been found for a large variety of allylic and bisallylic hydride donors, a rule of thumb is derived that hydride transfer processes may compete with carbon-carbon bond-forming reactions when carbocations are combined with olefins of pi-nucleophilicity N < 0.  相似文献   

3.
The scope of the dehydrative allylation reaction using allyl alcohol as allyl donor with [RuCp(PP)]+ complexes as catalysts is explored. Aliphatic alcohols are successfully allylated with allyl alcohol or diallyl ether, obtaining high selectivity for the alkyl allyl ether. The reactivity of aliphatic alcohols is in the order of primary > secondary ? tertiary. The tertiary alcohol 1‐adamantanol reacts extremely slowly in the absence of strong acid, but when HOTs is added, reasonable yields of 1‐adamantyl allyl ether are obtained. The alkyl allyl ether is found to be the thermodynamically favored product over diallyl ether. Apart from alcohols, thiols and indole are also efficiently allylated, while aniline acts as a catalyst inhibitor. Allylation reactions with various substituted allylic alcohols give products with retention of the substitution pattern. It is proposed that a Ru(IV) σ‐allyl species plays a key role in the mechanism of these allylation reactions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The collision-induced allylic cleavage reactions of deuterium-labeled [M ? H + 2Li)+ and [M ? H]- ions of monounsaturated fatty acids were investigated. Three concerted mechanistic possibilities were considered for this process: a l,4-elimination of a vinylic H, a retro-ene reaction, and a l,4-conjugate elimination. A fourth mechanistic possibility, a two-step radical version of the retro-ene and l,4-conjugate elimination reactions, was also considered. The radical reactions are in accord with the isotopic labeling results and offer certain mechanistic consistencies for cleavage of both C-C allyl bonds; they are expected, however, to have large activation energies. The lower-energy concerted alternatives, the retro-ene reaction for cleavage of the proximal and the l,4-conjugate elimination for cleavage of the distal C-C allyl bond, are also consistent with experimental results. The alternative of two different concerted mechanisms for cleavage of the two allyl bonds, however, is at odds with the charge-remote concept.  相似文献   

5.
Mechanistic aspects of allylic substitutions with iridium catalysts derived from phosphoramidites by cyclometalation were investigated. The determination of resting states by 31P NMR spectroscopy led to the conclusion that the cyclometalation process is reversible. A novel, one‐pot procedure for the preparation of (π‐ allyl)Ir complexes was developed, and these complexes were characterised by X‐ray crystal structure analyses and spectral data. They are fully active catalysts of the allylic substitution reaction. DFT calculations on the allyl complexes, transition states of the allylic substitution and product olefin complexes gave further mechanistic insight.  相似文献   

6.
[reaction: see text] An efficient one-pot procedure was developed for palladium-catalyzed electrophilic substitution of allyl acetates (2a-h) in the presence of bis(pinacolato)diboron (1). These reactions proceed with an excellent regioselectivity and with a remarkably high stereoselectivity. The catalytic transformations take place via palladium-catalyzed formation of allyl boronates, which subsequently react with aldehyde (3) and sulfon-imine (4) electrophiles to afford homoallylic alcohols (5a-h) and amines (6a-d), respectively. A particularly interesting mechanistic feature is that the allylic substitution of the transient allyl boronate with sulfon-imine requires palladium catalysis. This finding indicates that the formation of the homoallylic amine derivatives (6a-d) involves bis-allylpalladium intermediates.  相似文献   

7.
(π‐Allyl)Ir complexes derived from dibenzocyclooctatetraene and phosphoramidites by cyclometalation are effective catalysts for allylic substitution reactions of linear monosubstituted allylic carbonates. These catalysts provide exceptionally high degrees of regioselectivity and allow the reactions to be run under aerobic conditions. A series of (π‐allyl)Ir complexes were prepared and characterized by X‐ray crystal structure analyses. An allylic amination with aniline displayed different resting states depending on the presence of a strong base. DFT calculations were carried out on the mechanistic aspects of these reactions. The results suggest that for the (π‐allyl)Ir complexes, the formation and reactions with nucleophiles proceed with comparable rates.  相似文献   

8.
A literature survey on the kinetics of hydride abstractions from CH-groups by carbocations reveals a general phenomenon: Variation of the hydride acceptor affects the rates of hydride transfer to a considerably greater extent than an equal change of the thermodynamic driving force caused by variation of the hydride donor. The origin of this relationship was investigated by quantum chemical calculations on various levels of ab initio and DFT theory for the transfer of an allylic hydrogen from 1-mono- and 1,1-disubstituted propenes (XYC=CH-CH(3)) to the 3-position of 1-mono- and 1,1-disubstituted allyl cations (XYC=CH-CH(2)(+)). The discussion is based on the results of the MP2/6-31+G(d,p)//RHF/6-31+G(d,p) calculations. Electron-releasing substituents X and Y in the hydride donors increase the exothermicity of the reaction, while electron-releasing substituents in the hydride acceptors decrease exothermicity. In line with Hammond's postulate, increasing exothermicity shifts the transition states on the reaction coordinate toward reactants, as revealed by the geometry parameters and the charge distribution in the activated complexes. Independent of the location of the transition state on the reaction coordinate, a value of 0.72 is found for Hammond-Leffler's alpha = deltaDeltaG/deltaDelta(r)G degrees when the hydride acceptor is varied, while alpha = 0.28 when the hydride donor is varied. The value of alpha thus cannot be related with the position of the transition state. Investigation of the degenerate reactions XYC=CH-CH(3) + XYC=CH-CH(2)(+) indicates that the migrating hydrogen carries a partial positive charge in the transition state and that the intrinsic barriers increase with increasing electron-releasing abilities of X and Y. Substituent variation in the donor thus influences reaction enthalpy and intrinsic barriers in the opposite sense, while substituent variation in the acceptor affects both terms in the same sense, in accord with the experimental findings. Marcus theory is employed to treat these effects quantitatively.  相似文献   

9.
Participation of 3d orbitals in reactions of sulfur-containing compounds are studied in terms of the triplet stability-instability criterion for the restricted Hartree-Fock molecular orbitals. The criterion seems to permit infallible judgment as to whether or not the introduction of d orbitals would really possess any chemical significance for the reacting systems. It is shown that sulfur d orbitals should play an important role in the Hofmann elimination of sulfonium salts as well as the thermal decomposition of thiirane 1,1-dioxide. In the addition of sulfenyl cations to olefin and the thermal allylic rearrangement of allyl sulfides, however, the d orbital participation is found to be of little significance. The conclusions find support in the results of analytic studies of the sulfur bondings involved.  相似文献   

10.
Regio- and stereoselective palladium-pincer complex catalyzed allylation of sulfonylimines has been performed by using substituted trifluoro(allyl)borates and trimethylallylstannanes. The reactions provide the corresponding branched allylic products with excellent regioselectivity. The stereoselectivity of these processes is very high when trifluoro(cinnamyl)borate and trimethyl cinnamyl stannane are employed as allylic precursors; however, the reaction with trifluoro(crotyl)borate results in poor stereoselectivity. The major diastereomer formed in these reactions was the syn isomer, while the (previously reported) reactions with aldehyde electrophiles afforded the anti products, indicating that the mechanism of the stereoselection is dependent on the applied electrophile. Therefore, we have studied the mechanistic aspects of the allylation reactions by experimental studies and DFT modeling. The experimental mechanistic studies have clearly shown that potassium trifluoro(allyl)borate undergoes transmetallation with palladium-pincer complex 1 a affording an eta(1)-allylpalladium-pincer complex (1 e). The mechanism of the transfer of the allyl moiety from palladium to the sulfonylimine substrate was studied by DFT calculations at the B3PW91/LANL2DZ+P level of theory. These calculations have shown that the electrophilic substitution of sulfonylimines proceeds in a one-step process with a relatively low activation energy. The topology of the potential energy surface in the vicinity of the transition-state structure proved to be rather complicated as nine different geometries with similar energies were located as first order saddle points. Our studies have also shown that the high stereoselectivity with cinnamyl metal reagents stems from steric interactions in the TS structure of the allylation reaction. In addition, these studies have revealed that the mechanism of the stereoselection in the allylation of aldehydes and sulfonylimines is fundamentally different.  相似文献   

11.
Palladium-catalyzed electrophilic allylic substitution of functionalized allyl chlorides and allyl acetates can be achieved in the presence of hexamethylditin under mild and neutral reaction conditions. This efficient one-pot procedure involves palladium-catalyzed formation of transient allylstannanes followed by generation of a bis-allylpalladium intermediate, which subsequently reacts with electrophiles. Using this catalytic transformation, various aldehydes and imines can be allylated providing highly functionalized homoallyl alcohols and amines. Furthermore, tandem bis-allylation reactions could be performed by employing tosyl isocyanate and benzylidenemalonitrile as substrates. A particularly interesting mechanistic feature of this reaction is that palladium catalyzes up to three different transformations in each catalytic cycle. Various allylic functionalities, including COOEt, CONH(2), COCH(3), CN, Ph, and CH(3), are tolerated in the catalytic reactions due to the application of neutral and mild reaction conditions. The substitution reaction occurs with very high regioselectivity at the branched allylic terminus. Moreover, in several reactions, a high stereoselectivity was observed indicating that this new catalytic process has a high potential for stereoselective synthesis. The regioselectivity of the reaction can be explained on the basis of DFT calculations. These studies indicate that the allylic substituent prefers the gamma-position of the eta(1)-allyl moiety of the reaction intermediate.  相似文献   

12.
A simple colorimetric assay of various transition-metal catalysts showed that the combination of DPPF, Ni(COD)(2), and acid is a highly active catalyst system for the hydroamination of dienes by alkylamines to form allylic amines. The scope of the reaction is broad; various primary and secondary alkylamines react with 1,3-dienes in the presence of these catalysts. Detailed mechanistic studies revealed the individual steps involved in the catalytic process. These studies uncovered unexpected thermodynamics for the addition of amines to pi-allyl nickel complexes: instead of the thermodynamics favoring the reaction of a nickel allyl with an amine to form an allylic amine, the thermodynamics favored reaction of a nickel(0) complex with allylic amine in the presence of acid to form a Ni(II) allyl. The realization of these thermodynamics led us to the discovery that nickel and some palladium complexes in the presence or absence of acid catalyze the exchange of the amino groups of allylic amines with free amines. This exchange process was used to reveal the relative thermodynamic stabilities of various allylic amines. In addition, this exchange reaction leads to racemization of allylic amines. Therefore, the relative rate for C-N bond formation and cleavage influences the enantioselectivity of diene hydroaminations.  相似文献   

13.
A palladium-catalyzed asymmetric allylation of isatins with allylic alcohols as an allyl donor was developed by using chiral spiro phosphoramidite ligands. A variety of chiral tertiary homoallylic alcohols 3-allyl-3-hydroxy-2-oxindoles were prepared directly from allylic alcohols in one step with excellent yields and moderate enantioselectivities. This represents the first catalytic asymmetric allylation of ketones with allylic alcohol as the allylating agent.  相似文献   

14.
Readily prepared allylic zinc halides undergo SN2‐type substitutions with allylic bromides in a 1:1 mixture of THF and DMPU providing 1,5‐dienes regioselectively. The allylic zinc species reacts at the most branched end (γ‐position) of the allylic system furnishing exclusively γ,α′‐allyl–allyl cross‐coupling products. Remarkably, the double bond stereochemistry of the allylic halide is maintained during the cross‐coupling process. Also several functional groups (ester, nitrile) are tolerated. This cross‐coupling of allylic zinc reagents can be extended to propargylic and benzylic halides. DFT calculations show the importance of lithium chloride in this substitution.  相似文献   

15.
The (4+3)-cycloaddition of allylic cations to dienes is a powerful method for the direct synthesis of seven-membered rings. Recent developments in this area have included new methods for the generation of allylic cations, diastereoselective and catalytic, enantioselective reactions, an increased understanding of the diverse mechanistic possibilities of the reaction and applications to the total synthesis of natural products and their analogues.  相似文献   

16.
The (4+3)-cycloaddition of allylic cations to dienes is a powerful method for the direct synthesis of seven-membered rings. Recent developments in this area have included new methods for the generation of allylic cations, diastereoselective and catalytic, enantioselective reactions, an increased understanding of the diverse mechanistic possibilities of the reaction and applications to the total synthesis of natural products and their analogues.  相似文献   

17.
A concise [4+3] cycloaddition reaction of pyrroles with 2-(silyloxy)allyl cations has been developed. The oxyallyl cations stabilized with a methylthio group or geminal methyl groups were generated from the corresponding allylic alcohols under the influence of a Brönsted acid (Tf2NH), respectively. The use of N-nosyl-protected pyrroles as the four-carbon unit was found to give tropinone derivatives in high yield.  相似文献   

18.
Zirconocene-olefin complexes Cp(2)Zr(H(2)C=CHR), prepared in benzene-THF at 0 degrees C, react with acid chlorides to provide homoallylic alcohols. The key is an equilibrium between the zirconocene-olefin complexes and the corresponding zirconocene allyl hydride complexes via allylic C-H bond cleavage of the coordinating alkenes. Furthermore, the zirconocene-olefin complexes are also available for the reaction with 1,4-diketone to afford anti-1,4-diols with excellent diastereoselectivity. Thus, Cp(2)Zr(H(2)C=CHR) serves as a donor of both hydride and an allylic group. These reactions also proceed efficiently by using zirconocene-olefin complexes, derived from Cp(2)ZrCl(2), Mg metal, and 1-alkenes.  相似文献   

19.
The effect of remote substituents on bond dissociation energies (BDE) is examined by investigating allylic C-F and C-H BDE, as influenced by Y substituents in trans-YCH=CHCH2-F and trans-YCH=CHCH2-H. Theoretical calculations at the full G3 level model chemistry are reported. The interplay of stabilization energies of the parent molecules (MSE) and of the radicals formed by homolytic bond cleavage (RSE) and their effect on BDE are established. MSE values of allyl fluorides yield an excellent linear free energy relationship with the electron-donating or -withdrawing ability of Y and decrease by 4.2 kcal mol-1 from Y = (CH3)2N to O2N. RSE values do not follow a consistent pattern and are of the order of 1-2 kcal mol-1. A decrease of 4.1 kcal mol-1 is found in BDE[C-F] from Y = CH3O to NC. BDE[YCH=CHCH2-H] generally increases with decreasing electron-donating ability of Y for electron-donating groups and does not follow a consistent pattern with electron-withdrawing groups, the largest change being an increase of 3.6 kcal mol-1 from Y = (CH3)2N to CF3. The G3 results are an indicator of benzylic BDE in p-YC6H4CH2-F and p-YC6H4CH2-H, via the principle of vinylogy, demonstrated by correlating MSE of the allylic compounds with physical properties of their benzylic analogues.  相似文献   

20.
A novel application of the Grubbs carbene complex has been discovered. The first examples of the catalytic deprotection of allylic amines with reagents other than palladium catalysts have been achieved through Grubbs carbene mediated reaction. Significantly, the catalytic system directs the reaction toward the selective deprotection of allylic amines (secondary as well as tertiary) in the presence of allylic ethers. A variety of substrates, including enantiomerically pure multifunctional piperidines, are also usable. The new method is more convenient, chemoselective, and operationally simple than the palladium-catalyzed method. The current mechanistic hypothesis invokes a nitrogen-assisted ruthenium-catalyzed isomerization, followed by hydrolysis of the enamine intermediate. We believe that the reactive species involved in the reaction may be an Rubond;H species rather than the Grubbs carbene itself. Thus, the isomerization may occur according to the hydride mechanism. The synthetic utility of this ruthenium-catalyzed allyl cleavage is illustrated by the preparation of indolizidine-type alkaloids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号