首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 453 毫秒
1.
为了开发与应用新型列车车体降噪内装结构,基于混合FE-SEA法对轨道车辆用新型橡胶泡棉夹芯板进行隔声与声辐射预测建模,并进行了试验验证,进而利用该模型分析了橡胶泡棉孔隙率与芯皮厚度比对其隔声性能、声辐射性能的影响规律,并通过敷设阻尼层优化了其声学性能。最后,在侧墙组合结构的声学设计中评价了其实际应用效果。结果表明:随着孔隙率的逐步下降,橡胶泡棉夹芯板隔声量上升趋势较为明显,而辐射声功率持续降低;随着芯皮厚度比的逐步提高,夹芯板隔声量呈略微上升趋势,辐射声功率则相应降低。在远离声源一侧的橡胶泡棉蒙皮外侧敷设阻尼层的效果最优,优化后夹芯板计权隔声量提高0.7dB,总声功率级降低0.7dB;相较于传统木质胶合板和铝蜂窝板,橡胶泡棉夹芯板相较于传统内装板材在结构隔声设计中具有轻量化优势。  相似文献   

2.
实验室隔声测量中试件洞填隙墙传声影响的检验   总被引:1,自引:0,他引:1       下载免费PDF全文
谭华 《应用声学》2009,28(1):76-80
文章探讨了实验室建筑构件隔声测量中填隙墙传声影响的检验与修正方法。通过实验分析,给出了三种可用于不同隔声量构件的门、窗和玻璃试件隔声测量的填隙墙构造方式。  相似文献   

3.
提出了一种计算上下面板非对称的三明治夹芯板隔声性能的方法.通过对非对称夹芯梁表观抗弯曲刚度的计算,得到对应夹芯板随频率变化的表观抗弯刚度,代入4阶的控制方程,应用模态展开法可以方便地计算简支非对称夹芯板的隔声量.对4种定制的3层非对称碳纤维夹芯板进行了理论计算和实验测试对比,在频率范围100~3150Hz内,计权隔声量...  相似文献   

4.
高效共振混合机工作频率为60 Hz,且系统处于共振,产生较大低频噪声。针对振动机械产生的有害噪声,分析了高效共振混合机低频高加速度共振混合过程的特点,得到了60 Hz低频声波穿透力强的特点,相比传统的以吸声材料构建的50~100 mm厚度、隔声效果小于10 dB的隔声罩,分析了薄膜型声学超材料在低频减振降噪中的隔声特性。通过多物理场仿真分析,60 Hz时隔声量为31.4 dB,确定了硅橡胶弹性薄膜的预应力和质量块的面密度;采用3D打印机快速成型技术,构建了隔声实验装置,分析了独立隔声单元、面密度、薄膜尺寸等隔声特性规律。基于人耳在实际环境中感受到的噪声强度,提出了噪声衰减量和插入损失的分析方法,在距离声源380 mm和1000 mm的位置,60 Hz时隔声量分别为27 dB和38 dB。研究成果丰富了低频隔声特性理论,为薄膜型声学超材料的工程设计和优化提供了技术支撑。  相似文献   

5.
针对隔声门低频隔声性能差的问题,将嵌入式质量应用于隔声门中以提高隔声门在低频段的隔声性能,通过建立两个相邻混响室的有限元模型计算隔声门的隔声量。基于该模型,并结合隔声门低频隔声性能的评价方法,对在低频段影响隔声门有效隔声量的相关参数进行了参数关联性研究和优化,优化结果表明:对于92 mm厚,容重24 kg/m3的玻璃棉,使用灰铸铁作为质量块,并合理布置各个质量块的大小及其在玻璃棉中的相对位置可以有效提高隔声门在低频段的隔声性能;与普通隔声门相比,在低频段嵌入式质量隔声门的有效隔声量增加了5.0 dB。  相似文献   

6.
基于圆周排列的Helmholtz共振腔单元,设计并实现了一种具有低频宽禁带的声人工结构,可以在结构中心处实现二维隔声效果.针对实际模型,搭建了二维声场测量平台,进行了相应的实验研究,实验结果与有限元仿真结果符合较好.该结构在较宽的频带内(680—1050 Hz)可以实现较好的隔声效果,最大隔声量可达41 d B.实验中还研究了单元参数及共振状态对隔声效果的影响.隔声区的大小与共振单元的分布形式有直接关系,而良好的共振状态将对提高隔声量有一定帮助.研究结果对设计新型声防护结构具有理论与应用价值.  相似文献   

7.
陈亮  沈敏 《应用声学》2020,39(6):907-916
有限大含多孔材料和空气层复合板结构隔声特性的研究尚不充分。该文旨在研究四边简支边界条件下复合板结构隔声特性。首先基于流体饱和多孔弹性介质的声传播理论计算了声波在多孔介质中的传播波数;继而采用四边简支边界条件下板结构的模态函数,利用模态叠加法和伽辽金法推导了复合板结构隔声系数理论模型,并数值求解复合板隔声量。将理论模型得到的四边简支复合板隔声量与实验结果对比,验证了理论模型的正确性。最后,详细讨论了边界条件、板结构尺寸和多孔材料厚度等主要参数对隔声特性的影响。结果表明:四边简支复合结构隔声特性曲线上“谷值”出现得较少,并且简支复合板隔声特性的第一个“吻合频率”比固支支撑复合板更靠近低频,当频率超过3000 Hz以后,简支和固支边界条件复合板结构隔声特性趋于一致。  相似文献   

8.
装配式建筑是今后建筑业发展的方向,因此对装配式建筑在隔声性能方面有什么特点,是急待实验研究的。我院与北京市建筑设计院合作,曾对北京地区试点工程所采用的几种装配式墙板的空气声隔绝性能,在实验室内进行了测定。测定的墙共计九种,主要都是用于住宅、办公楼、中小学校等民用工程。如果按  相似文献   

9.
提出了一种联合扩散场(DAF)激励与近场声全息(NAH)辐射声强重建的建筑构件空气声隔声测量方法。该方法首先通过DAF激励构件振动并获取入射声功率,然后利用NAH技术从辐射声压场中重建构件表面高空间分辨率的法向声强分布,最后根据声强分布来计算辐射声功率和定位辐射热区,从而实现构件隔声量和隔声缺陷测量。隔声室实验研究表明,在测试距离和采样间距均为0.04 m的条件下,该方法测量的隔声量与声压法的误差在100~5000 Hz频带小于3.3 dB,在250~3150 Hz频带小于1.3 dB,对圆孔(直径8 mm)和矩形缝(长80 mm、宽3 mm)的定位精度高达厘米级;同时,该方法在一定混响和背景噪声影响下的稳定性较强,接收室混响时间从1.0 s增至3.4 s (步长0.6 s)以及信噪比从10 dB降至0 dB (步长5 dB),隔声量测量误差分别在0.8 dB和0.3 dB以内,缺陷定位误差在0.037 m和0.035 m以内。所提方法有助于提高实验室中建筑构件隔声特性的测量能力,同时对接收室测试环境具有较强的鲁棒性。  相似文献   

10.
基于高速列车减振降噪需求,本文应用Biot提出的多孔弹性介质声传播理论,采用传递矩阵法理论推导了典型分层结构的隔声量计算公式,给出了空气层与多孔材料对分层复合结构隔声特性的影响。将传递矩阵与遗传算法相结合,对特定中低频段内的复合结构隔声特性进行了优化。研究结果表明:空气层和多孔材料有助于分层复合结构隔声量的提高,特别是空气层对低频隔声有很好的促进作用,另外空气层与多孔材料的分配情况也影响着隔声效果。含有空气层的复合结构在提高隔声量的同时降低了结构的总体重量,实现了高速列车隔声材料低能耗和轻量化的设计目标。  相似文献   

11.
Multi-layer structures have issues with sound insulation at low and mid-frequencies due to mass-air-mass resonance. The purpose of this study is to investigate improvements to the sound insulation performance of multi-layer structures using a microperforated panel (MPP), which can absorb well over a wide frequency range. Although MPPs have been investigated over the last several decades, almost all studies have been conducted in terms of sound absorption. Herein the sound transmission loss of multi-layer structures with flexible MPPs of infinite extent is theoretically investigated. The calculation is based on the wave equation and the equation of panel vibration including the effect of perforation of the panel. Additionally to consider a more realistic sound insulation performance, the effect of the directional distribution of the incident energy in a reverberation chamber is taken into account. Experiments are conducted using an acoustic tube to validate the calculated results and the reverberation chamber method to verify the actual sound insulation characteristics. Both experiments agree well with the theoretically calculated perforation effects. Consequently, MMPs are confirmed to improve the deterioration of sound insulation performance due to mass-air-mass resonance of multi-layer structures.  相似文献   

12.
为了提升某重型商用车前围的隔声性能,建立了用于分析前围传递损失的有限元-统计能量分析(FE-SEA)模型。针对前围结构复杂的特点,依据FE-SEA模型建模原则,提出了通过在表面创建声腔来确保能量在模型中的正确传递路径。将仿真结果与测试值对比,二者误差小于1.6 dB(A),验证了FE-SEA方法的准确性。用吸声材料与隔声材料复合设计前围声学包,采用正交试验法对前围声学包进行优化设计并对各个试验方案进行仿真计算。对仿真结果进行极差分析与方差分析,选出了在传递损失、重量和厚度三方面达到最佳平衡的声学包:毛毡(10 mm)+EPDM隔声垫(2 mm)。结果表明,优化后的前围传递损失在测试频率315 Hz~2000 Hz范围内最小提升了3.8 dB(A),最大提升了7 dB(A),前围的隔声性能得到较大的提升。  相似文献   

13.
A major survey of sound insulation between dwellings in modern constructions is being carried out by the Building Research Station. The results of this survey will provide information on the operation of a performance-based building regulation and should lead to improved predictions of sound insulation. Some preliminary results are given for the performance of party walls in timber-framed dwellings.  相似文献   

14.
If variations and uncertainty in building acoustic measurements can be controlled, construction costs can potentially be reduced since the building will not have to be acoustically over-designed. Field measurements of impact and airborne sound insulation were carried out for an industrially prefabricated cross-laminated timber (CLT) system of plate elements. The results from 18 rooms, forming three groups with respect to size, were compared to a similar study dealing with a prefabricated Volume Based Building (VBB) system. Large variations were found at frequencies below 100 Hz which is crucial for the low frequency adaptation terms connected to the weighted sound insulation indices. The measurement uncertainty was investigated by analysing the repeatability, measurement direction and the time dependence of the sound source. The variations due to the measurement procedure were found to be small compared to the total variations. It was also indicated that the variations in sound insulation are smaller with a prefabricated system compared to on-site production, since less work is required at the building site.  相似文献   

15.
Three different wall sections with step shape were applied in the finite element analysis models set up to investigate the effect on low frequency sound field by wall modification. The heights of the step in three cases are taken as equal, random and optimized. The optimized value is obtained by using an optimization process with an objective function of minimum fluctuation in sound field. The frequency responses of rooms with original and modified walls were calculated in a range from 60 Hz to 120 Hz. The results showed that the room with an optimized wall section had the flattest frequency response. Same thing was true as the ratio of the room was changed. The largest improvement on fluctuation reached 4.5 dB. In addition, wall section with semicircle and triangle were studied. The rooms that wall section had optimized radius and heights also gave a better performance than those that had fixed radius and heights. Therefore, it is possible to use optimized wall section to improve low frequency sound field.  相似文献   

16.
C. Hopkins  P. Turner 《Applied Acoustics》2005,66(12):1339-1382
Procedures for the field measurement of airborne sound insulation between rooms with diffuse fields are described in International Standard ISO 140-4. However, many dwellings contain rooms with volumes less than 50 m3, where low frequency measurements are less reliable; hence there is a need for a measurement procedure to improve the reliability of field measurements in rooms with non-diffuse fields. Procedures are proposed for sound pressure level and reverberation time measurements for the 50, 63 and 80 Hz third octave bands. The sound pressure level measurement combines corner microphone positions with positions in the central region of each room. This provides a good estimate of the room average sound pressure level with significantly improved repeatability.  相似文献   

17.
The effect of the resilience of the steel studs on the sound insulation of steel stud cavity walls can be modeled as an equivalent translational compliance in simple models for predicting the sound insulation of walls. Recent numerical calculations have shown that this equivalent translational compliance varies with frequency. This paper determines the values of the equivalent translational compliance of steel studs which make a simple sound insulation theory agree best with experimental sound insulation data for 126 steel stud cavity walls with gypsum plaster board on each side of the steel studs and sound absorbing material in the wall cavity. These values are approximately constant as a function of frequency up to 400 Hz. Above 400 Hz they decrease approximately as a non-integer power of the frequency. The equivalent translational compliance also depends on the mass per unit surface area of the cladding on each side of the steel studs and on the width of the steel studs. Above 400 Hz, this compliance also depends on the stud spacing. The best fit approximation is used with a simple sound insulation prediction model to predict the sound insulation of steel stud cavity walls whose sound insulation has been determined experimentally.  相似文献   

18.
The acoustic insulation provided by infinite double panel walls, when subjected to spatially sinusoidal line pressure loads, is computed analytically. The methodology used extends earlier work by the authors on the definition of the acoustic insulation conferred by a single panel wall. It does not entail any simplification other than the assumption that the panels are of infinite extent. The full interaction between the fluid (air) and the solid layers is thus taken into account and the calculation does not involve limiting the thickness of any layer, as the Kirchhoff or Mindlin theories require. The problem is first formulated in the frequency domain. Time domain solutions are then obtained by means of inverse Fourier transforms using complex frequencies.The model is first used to compute the sound reduction provided by a double homogeneous brick wall, with identical panels, when illuminated by plane sound waves. The results are then compared with those provided by the simplified method proposed by London, which was later extended by Beranek (London-Beranek method). The limitations of the simplified London-Beranek model, namely, its applicability only to double walls with identical mass, subjected to plane waves, and its failure to account for the coincidence effect, are overcome by the method proposed.Time signatures are produced to illustrate the different sound transmission mechanisms. Several types of body and guided waves are originated, giving rise to a complex dynamic system with multiple reflections within the solid and fluid layers and the global resonance of the system. The effect of the cavity absorption is considered by attributing a complex density to the air filling the space between the two wall panels. Absorption attenuates the dips of insulation controlled by the cavity resonances. Several simulations are then performed for different combinations of wall and air layer thickness to assess the influence of this variable on the final acoustic insulation. The influence of the air cavity on sound reduction was found to be dependent on the frequency. At low frequencies a better performance was achieved for thicker air layers, while at higher frequencies a thinner air layer is preferable. The use of wall panels with different mass resulted in the wall performing better, particularly for high frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号