首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N.M.R. Spectroscopic Investigations of Thiophosphazenes. II. N.M.R. Spectroscopic Investigations of 15N Labelled Thiophosphazenes Completely 15N labelled compounds of the type 15N3P3Cl6?n(SR)n, R = Et or Ph; n = 0, 2, 4, or 6, and of the type 15N4P4Cl8?n(SR)n, R = Et; n = 0, 4, or 8, were prepared and investigated by means of both 31P n.m.r. spectroscopy and 15N n.m.r. spectroscopy respectively. The coupling constants 2JPP, in some cases only found by simulating the spectra, and the coupling constants 1JPN are given. The values of these coupling constants and their relation are discussed. The general tendency is visible, that with increasing coupling constant 1JPN the coupling constant 2JPP decreases. With increasing grade of substitution n the 15N chemical shifts are changed to higher fields.  相似文献   

2.
Synthesis, Crystal Structures, and Vibrational Spectra of [Pt(N3)6]2– and [Pt(N3)Cl5]2–, 195Pt and 15N NMR Spectra of [Pt(N3)nCl6–n]2– and [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 By ligand exchange of [PtCl6]2– with sodium azide mixed complexes of the series [Pt(N3)nCl6–n]2– and with 15N‐labelled sodium azide (Na15NN2) mixtures of the isotopomeres [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 and the pair [Pt(15NN2)Cl5]2–/[Pt(N215N)Cl5]2– are formed. X‐ray structure determinations on single crystals of (Ph4P)2[Pt(N3)6] ( 1 ) (triclinic, space group P1, a = 10.175(1), b = 10.516(1), c = 12.380(2) Å, α = 87.822(9), β = 73.822(9), γ = 67.987(8)°, Z = 1) and (Ph4As)2[Pt(N3)Cl5] · HCON(CH3)2 ( 2 ) (triclinic, space group P1, a = 10.068(2), b = 11.001(2), c = 23.658(5) Å, α = 101.196(14), β = 93.977(15), γ = 101.484(13)°, Z = 2) have been performed. The bond lengths are Pt–N = 2.088 ( 1 ), 2.105 ( 2 ) and Pt–Cl = 2.318 Å ( 2 ). The approximate linear azido ligands with Nα–Nβ–Nγ‐angles = 173.5–174.6° are bonded with Pt–Nα–Nβ‐angles = 116.4–121.0°. In the vibrational spectra the PtCl stretching vibrations of (n‐Bu4N)2[Pt(N3)Cl5] are observed at 318–345, the PtN stretching modes of (n‐Bu4N)2[Pt(N3)6] at 401–428 and of (n‐Bu4N)2[Pt(N3)Cl5] at 408–413 cm–1. The mixtures (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 and (n‐Bu4N)2[Pt(15NN2)Cl5]/(n‐Bu4N)2[Pt(N215N)Cl5] exhibit 15N‐isotopic shifts up to 20 cm–1. Based on the molecular parameters of the X‐ray determinations the vibrational spectra are assigned by normal coordinate analysis. The average valence force constants are fd(PtCl) = 1.93, fd(PtNα) = 2.38 and fd(NαNβ, NβNγ) = 12.39 mdyn/Å. In the 195Pt NMR spectrum of [Pt(N3)nCl6–n]2–, n = 0–6 downfield shifts with the increasing number of azido ligands are observed in the range 4766–5067 ppm. The 15N NMR spectrum of (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 exhibits by 15N–195Pt coupling a pseudotriplett at –307.5 ppm. Due to the isotopomeres n = 0–5 for terminal 15N six well‐resolved signals with distances of 0.03 ppm are observed in the low field region at –201 to –199 ppm.  相似文献   

3.
14/15N N.M.R. and 11B N.M.R. Data of Trifluoromethylthioamino-boranes with Natural Isotope Abundance (Part 2) 14/15N as well as 11B-NMR data for trifluoromethylthioabminoboranes of the types XnB[N(SCF3)2], with X = F, Cl, Br, N3, or NHSCF3, n = 0, 1 or 2, and Cl3?nB(NHSCF3)n with n = 1, 2 or 3, as well as for the amine-borne Me3NBCl2N(SCF3)2 and the cyclic borazene (CF3SNHBNH)3 are reported. These data are used, together with a qualitative analysis of the bonding situation based on observed rotational barriers and known structures, to analyse for B ← N back donation in these compounds. Relatively small variations in δ14/15N compared to those observed for alkylaminoboranes as well as large variations in δ11B are suggestive of small contributions only from back bonding. In addition the ?halogene like”? nature of the (CF3S)2N group is confirmed. For the series X2BN(SCF3)2 (X = F, Cl, Br on N3), XB[N(SCF3)2]2 (X = Cl, Br, N3 or N(SCF3)2) and Cln?3B(NHSCF3)n (n = 1, 2 or 3) a linear relationship for δ11B and δ14/15N is observed. It is furtheron demonstrated that hitherto known δ14/15N/11B correlations are valid only in case of strong B ← N back donation.  相似文献   

4.
Formation and N.M.R.-Spectroscopic Characterization of Alk-(ar-)oxy Derivatives of Trichlorophosphazene-N-phosphoryldichloride, Cl3P?N? P(O)Cl2, Imido- and N-Methylimidodiphosphoryltetrachloride, Cl2P(O)NHP(O)Cl2 and Cl2P(O)N(CH3)P(O)Cl2 The ester chlorides and esters P2NOCl5?x(OR)x (x = 1?5), P2(NH)O2Cl4?x(OR)x (x = 1–4) and P2(NCH3)O2Cl4–x(OR)x (x = 1–4) derived from the title compounds by substitution of chlorine atoms by alk- or aroxy groups are characterized by their 31P-n.m.r. data. The possibilities for forming these compounds by alcoholysis, chloridolysis, dealkylation and P? N-bond formation are discussed.  相似文献   

5.
The linear relationship between the coupling constants 1J(Sn? 13C) and 2J(Sn? H), observed for a number of organotin compounds, does not hold for coupling in the Sn? CHnCl3?n group of mono- and dichloromethyltin compounds. A complete determination of all NMR parameters of the compounds Me3Sn-CHnCl3?n (n = 0 to 3) shows no further anomalies, indicating that steric factors must be responsible for the unusually low values of 2J(Sn? H) in the SnCHnCl3?n group. Molecular weight measurements support this theory, showing that the chlorine-containing compounds are associated.  相似文献   

6.
In Arbuzov-type reactions CFnCl3?nSCl reacts with ROPCl2 (R = CH3, C2H5) to give CFnCl3?nSP(O)Cl2 (n = 3,2,1,0). The corresponding reaction with CF3SeX (X = Cl, Br) produces CF3SeP(O)Cl2 in good yields only in the presence of catalysts such as SbCl5 or BCl3. Reactions between P4 and the sulfenylchlorides produce (CFnCl3?nS)xPCl3?n (n = 3,2,1 and x = 1,2). On heating CFn′ Cl3?n′ SP(O)Cl2 (n′ = 2,1,0) decompose to P(O)Cl3 and SCFn′ Cl2?n′. During this process fluorination of P(O)Cl3 to P(O)F3 by SCF2 is observed. A Cl/Br exchange between CFnCl3?nSP(O)Cl2 (n = 3,2) and PBr3 was proved 19F? and 31P-NMR-spectroscopically.Chemical and physical properties of the newly synthesized compounds will be discussed.  相似文献   

7.
Contribution to the Chemistry of Phosphorus-Nitrogen Compounds. Reaction of Cl2(O)P? NH? P(O)Cl2 with Tetrahydrofuran As well as many phosphorus compounds, the imidodiphosphoryl tetrachloride HN(P(O)Cl2)2 reacts with a large excess of tetrahydrofuran to give the polytetrahydrofuran. Otherwise, if we use smaller molecular ratios THF/HN(P(O)Cl2)2 (1/2 to 3) a polytetrahydrofuran with short chains and N(ω-hydroxypolytetramethylenoxy)imidodiphosphoryl tetrachloride R? N(P(O)Cl2)2; R = H(O(CH2)4)n- are obtained at 22° or 30°C. The 1H and 31P n.m.r. spectra show that oxonium ions are formed with progressive additions of THF to HN(POCl2)2/CCl4 solution. Then two mechanisms have been considered by nucleophilic attack on carbon α of oxonium ion coming from: the free electronic dublett on oxygen of THF to give polytetrahydrofuran or (and) from the nitrogen of imido diphosphoryl tetra chloride anion ((Cl2OP)2N)? to obtain N(ω-hydroxypolytetramethylenoxy)imidodiphosphoryl tetrachloride.  相似文献   

8.
The 1H and 31P NMR spectra of a series of compounds containing the PIII-N-PV skeleton including Cl2PNMeP(Z)Cl2 (Z?O or S), Cl2P·NMe·P(O)CINMe2, P4(NMe)6Zn (Z?S, n = 1?3; Z?Se, n = 1), XP(NBut)2P(Z)X (X?Cl, Z?O or S; X?OMe, Z?S or Se; X?NMe2, Z?S or Se; X?NEt2, Z?Se), (X?O or S), and Ph2PNRP(S)Ph2 (R?Me, Et) have been obtained. 1H-{31P} double resonance, and in selected cases, 31P-{1H, 77Se} and 31P-{1H, 31P} triple resonance experiments, indicate that 2J(PIII NPV) is positive in acyclic compounds, negative in most cyclic or cage compounds, and furthermore, is related to the conformation adopted by the PIII-N bond.  相似文献   

9.
Preparation and Characterization of Bond-Isomeric Hexakis-(thiocyanato-isothiocyanato)rhodates(III) and Di-μ-thiocyanato-N, S-octathiocyanatodirhodate (III) The reaction of RhCl3 with an aqueous solution of KSCN does not yield pure [Rh(SCN)6]3? as is supposed until now but a mixture of the bond isomers [Rh(NCS)n(SCN)6?n]3?, n = 0–3. By heating the tetrabutylammonium salts N coordination of the ambident SCN? is favoured forming mixtures with n = 0–4. The pure bond isomers are separated by ion exchange chromatography on diethylaminoethyl cellulose. Extracting the mixture (n = 0–3) with triphenylphosphiniminiumchloride from water into CH2Cl2 [Rh2(SCN)10]4? is formed, containing two Rh? SCN? Rh bridges and exclusively S-coordinated terminal ligands. Depending on S or N bonding the IR and Raman spectra show typical vibrations: νCN(N) and νCN(S): 2095–2170, νCS(N): 810–835, νCS(S): 695–710, δNCS: 460–470, δSCN: 425–465, νRhN: 300–340, νRhS: 265–306 cm?1. The application of group theory indicates that for n = 2 and 4 the cis-, for n = 3 the mer-compound exists. Except the inner ligand vibrations the Rh? N and Rh? S valence vibrations are assigned according to the supposed point symmetries. By interaction of trans-positioned ligands characteristic shifts are caused. The isolated complexes may also be distinguished and identified by their electronic spectra.  相似文献   

10.
15N NMR spectra of several aminoboranes (Me2B–NMe2, Cl2B–NMe2, Br2B–NMe2, OCH2CH2OB–NMe2), three N‐pyrrolylboranes, and an iminoborane (tBu–B≡N–tBu) was measured. The spin‐spin coupling constants 1J(15N, 11B) were resolved at elevated temperatures. In the case of the iminoborane at 105 °C, the coupling constant 1J(14N,11B) = 57 Hz could also be determined from the 11B NMR spectrum [from 15N NMR 1J(15N,11B) = 81 Hz]. Generally, there is no correlation between the magnitude of 1J(15N,11B) and the bond length dBN. The values 1J(15N,11B) indicate that changes in σ bonding affect their magnitude, and the nature of the lone pair of electrons at nitrogen is of great importance. The calculated NMR parameters of an adduct of the iminoborane with an N‐heterocyclic carbene, show that the bonding situation around the BN double bond in the adduct is comparable with imines.  相似文献   

11.
13C, 15N (at natural abundance) and 29Si NMR data (chemical shifts and coupling constants) are reported for aminosilanes R2R′SiNHR1 (1), bis(silyl)amines Me2R′SiNHSiMe3 (2), 1,2-bis(amino)-ethanes (3), bis(amino)silanes RR′Si(NHR1)2 (4), 1,2-bis(amino)tetramethyldisilanes (5) and 1,1,2,2-tetrakis(amino)dimethyldisilanes (6). The δ15N values depend more on the nature of the substituents R1(H, alkyl, aryl) at the nitrogen atom (in the same way as for other amines) than on different substituents at the silicon atom. A linear correlation between 1J(29Si15N) and 1J(29Si13C) is proposed for silanes in which the SiN unit is replaced by the SiCH unit. This correlation comprises all 1J(29Si15N) values for aminosilanes R4-nSi(N)n (n = 1–4) and—most likely—also for aminodisilanes, and it predicts 1J(29Si15N)>0 if the corresponding value |1J(29Si13C)|>25 Hz. For the first time a two-bond coupling across Si, 2J(29Si 15N) = 6.9 Hz, has been observed for 6a. In the case of 6b (R1 = sBu) all resonances for the diastereomers are resolved in the 15N and 29Si NMR spectra in contrast to the 1H and 13C NMR spectra.  相似文献   

12.
Synthesis and Properties of Lineary Phosphorylchlorphosphazenes The phosphorylchlorphosphazenes, Cl2(O)P—[N?PCl2]n—Cl, (n = 1, 2, 3) react like POCl3 with hexamethyldisilazan forming silylamides, Cl2(O)P—[N ? PCl2]n—NHSi(CH3)3, (n = 0, 1, 2, 3). From these are obtained the phosphorylchlorphosphazenes by reaction with PCl5 containing one group —N ? PCl2 more.  相似文献   

13.
The compounds trans-NPCl2?n(NMe2)n(NSOPh)2(n=0-2iNPCl2?n NMe2)n (NSOPh)2 (n=0-2) and N2P2Cl4?nl4?n(NMe2)nNSOP2P2Cl4?n(NMe2)nNSOPh(n=0-4), were prepared from their chloro-precursors. The substitution follows a completely non-geminal pathway, and all possible isomers are formed. The observed relative abundance of these isomers shows that the phenyl group exhibits a strong directing effect on the incoming amine. The 1H, 31P and 13C NMR spectra of the most abundant isomers are reported. 2J(CP) couplings within the PNMe2 grouping are affected by the number of substituents at the phosphorus atom. Almost linear relationships exist between the degree of substitution and the chemical shift of C-1 and C-4 of the phenyl groups. The effect of substitution on the 13C chemical shifts of these groups is ascribed to inductive effects.  相似文献   

14.
The magnetism of μ-oxo-bis[(5,15-dimethyl-2,3,7,8,12,13,17,18-octaethylporphyrinato)iron(III)] with bridge geometry d(Fe? O) = 1.752 Å and ?(Fe? O? Fe) = 178.6° can be explained in terms of antiferromagnetically exchange coupled iron(III)-3d5 pairs. The magnetochemical analysis in the temperature range 6K–295K on the basis of the isotropic Heisenberg model (spin Hamiltonian: ? = ?2J?1 · ?2 S1 = S2 = 5/2) leads to the exchange parameter J = ?125 cm?1. With regard to the Fe? O bond length the J value corresponds to the series of data observed for other μ-oxodiiron-porphyrins and -porphycenes. Compared to the spin-spin coupling in [Fe2Cl6O]2?, |J| is enhanced by ≈ 10%.  相似文献   

15.
The Preparation of Methylthio(trihalogeno)phosphonium Salts ClnBr3?nPSCH3+MF6?(n = 0–3; M = As, Sb) and Hal3PSCH3+SbCl6?(Hal = Br, Cl) The methylthio(trihalogeno) phosphonium salts BrnCl3?nPSCH3+MF6? (n = 0–3; M = As, Sb) are prepared by methylation of the corresponding thiophosphorylhalides BrnCl3?nPS in the system SO2/CH3F/MF5. The hexachloroantimonates Hal3PSCH3+SbCl6?(Hal = Br, Cl) are synthesized by thiomethylation of PBr3 and PCl3 with CH3SCl/SbCl5. All salts are characterized by vibrational and NMR spectroscopy.  相似文献   

16.
1H, 13C, 15N and 195Pt NMR studies of gold(III) and platinum(II) chloride organometallics with N(1),C(2′)‐chelated, deprotonated 2‐phenylpyridine (2ppy*) of the formulae [Au(2ppy*)Cl2], trans(N,N)‐[Pt(2ppy*)(2ppy)Cl] and trans(S,N)‐[Pt(2ppy*)(DMSO‐d6)Cl] (formed in situ upon dissolving [Pt(2ppy*)(µ‐Cl)]2 in DMSO‐d6) were performed. All signals were unambiguously assigned by HMBC/HSQC methods and the respective 1H, 13C and 15N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: Δ1Hcoord = δ1Hcomplex ? δ1Hligand, Δ13Ccoord = δ13Ccomplex ? δ13Cligand, Δ15Ncoord = δ15Ncomplex ? δ15Nligand), as well as 195Pt chemical shifts and 1H‐195Pt coupling constants discussed in relation to the known molecular structures. Characteristic deshielding of nitrogen‐adjacent H(6) protons and metallated C(2′) atoms as well as significant shielding of coordinated N(1) nitrogens is discussed in respect to a large set of literature NMR data available for related cyclometallated compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Addition and Substitution Reactions at Tetrafluoro- and Tetrachlorodiborane(4) From equimolar mixtures of B2F4 and MenN(SiMe3)3-n (n = 0–3) the mono-addition products 1–4 are formed at low temperatures. By elimination of Me3SiF the adduct 2 gives the dimeric monosubstituted diborane 8 , which slowly decomposes at room temperature to the aminoborane 6 and (BF)n. The course of the reactions was studied by means of 11B and 19F NMR spectroscopy and by measuring the vapor pressures. According to the 11B and 31P NMR spectra the reaction of B2Cl4 with PCl5 or [Me4N]Cl in liquid hydrogen chloride at 0°C does not yield [PCl4]2+[B2Cl6]2? or [Me4N]2+[B2Cl6]2? but gives [PCl4]+[BCl4]?, PCl3 and BCl3 or [Me4N]+[BCl4]? and BCl3 besides (BCl)n.  相似文献   

18.
103Rh NMR Spectroscopic Evidence of Mixed Nonahalogenodirhodates(III), [Rh2ClnBr9–n]3?, n = 0–9 On heating a mixture of the tetrabutylammonium salts (TBA)3[Rh2Cl9] and (TBA)3[Rh2Br9] at 60°C in propylenecarbonate the complete system of the mixed nonahalogenodirhodates(III) [Rh2ClnBr9–n]3?, n = 0–9 is formed. In the 103Rh nmr spectra 40 different species have been detected, 16 with two equivalent 103Rh atoms each resulting in one singlet and 24 with inequivalent 103Rh atoms each pair giving two resonances. The signals of the geometric isomeres are not resolved. All 64 expected resonances are really observed. By additional measuring of the 103Rh nmr spectra of the fractions n = 0–4 separable by ion exchange chromatography on DEAE cellulose, and utilizing characteristic increments of chemical shifts the complete and unambiguous assignment of all signals is achieved.  相似文献   

19.
15N and 19F NMR Spectra and Xa-Exchange Reactions of the Cluster Anions [(Mo6Cli8)(15NCS)anXa6?n]2?, Xa = F, Cl, Br, I; n = 1–6 By intermolecular ligand exchange reaction of the new compound [(Mo6Cli8)(15NCS)a6] 2? with [(Mo6Cli6)Xa6]2?, Xa = F, Cl, Br, I, in acetone, the outersphere mixed cluster ions [(Mo6Cli8)(15NCS)a6Xa6?n]2?, n = 1–6, are formed and characterized by their distinct 15N nmr chemical shifts. The ambident SCN? is exclusively N-bonded, indicated by 15N nmr and vibrational spectra. The mixed cluster ions containing Xa = F are identified in acetonitrile by 19F nmr measurement as well. The kinetic analysis reveals equilibration at room temperature within 10 hours to statistical distribution of all compounds, inclusive the ratios for the geometric isomers for each system at any time with n = 2,4 cis:trans = 4 : 1 and n = 3 fac:mer = 2 : 3, indicating the equivalence of all Xa positions with respect to exchange reactions. For [(Mo6Cli8)Xa6]2? the reaction rates increase in the series Xa = Cl < Br < I < SCN < F. The 15N nmr chemical shifts are depending on the electronegativity and the number of the Xa ligands. Furthermore an antipodal influence working on 15N trans-positioned to Xa effects an additional highfield shift for Xa = F and an additional downfield shift for Xa = Cl, Br, I.  相似文献   

20.
Thermal silazane cleavage of dichloroboryldisilylamines (SiClmMe3?m)N(SiMe3)(BCl2) (1: m = 1; 2: m = 2) at 196 °C leads to the borazine derivates [(SiClmMe3?m)NB(ClnMe1?n)]3 (3: m = 1, n = 0.185; 4: m = 2, n = 0.111) characterized by NMR and IR spectroscopy and mass spectrometry. Single‐crystal X‐ray diffraction structure analyses reveal (BN)3 units with unusual twisted boat conformations in both compounds. Additionally, more detailed studies are done to clear up the function of the by‐products (SiClmMe3?m)N(SiClMe2)(BClMe) formed during the cyclization step leading to asymmetrically boron substituted borazine derivatives. The single‐source precursors 3 and 4 were cross‐linked with methylamine producing polymers 3P and 4P, which were transformed into black amorphous materials with ceramic yields of 20.8 % and 50.3 %, respectively. Ceramic 4C (Si1.00B0.98 N2.55 C1.37O0.05) was further investigated by 11B and 29Si magic angle spinning (MAS) NMR spectroscopy. A combined study of high‐temperature TG analyses and X‐ray powder diffraction analyses confirms the thermal stability of 4C up to 1670 °C. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号