首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation and Spectroscopic Characterization of the Pure Bondisomers [OsCl5(NCS)]2? and [OsCl5(SCN)]2? The oxidation of [OsCl5I]2? with (SCN)2 in CH2Cl2 yields the bondisomers [OsCl5(NCS)]2? and [OsCl5(SCN)]2?, which are isolated as pure compounds by ion exchange chromatography on DEAE-Cellulose. Only the salts of the N-isomer show significant shifts in the vibrational and electronic spectra caused by polarization of the terminal S depending on the size of the cations and the polarity of the solvents. In the IR and Raman spectra νCN(S), νCS(N) and δNCS are found at higher wave numbers than νCN(N), νCS(S) and δSCN. In the optical spectrum of the red [OsCl5(SCN)]2? the charge-transfer S→Os is nearly constant at 538 nm, but the N→Os transition of the yellow to violet coloured N-isomer shifts from 480 nm in organic solvents or in presence of large alkylammonium cations to 516 nm in aqueous solution and to 544 nm in the solid Cs-salt. The optical electronegativities are calculated to χopt(–SCN) = 2.6 and χopt(–NCS) = 2.6–2.8. According to spinorbit coupling and to lowered symmetry (C4v) the splitted intraconfigurational transitions are observed at 10 K as weak peaks in the regions 600, 1000 and 2000 nm. The O? O transitions are calculated from the vibrational fine structure. The lowest level of both isomers is confirmed by peaks in the electronic raman spectra. With the parameters ζ(OsIV) = 3200 cm?1 and B(? SCN) = 316 cm?1 or B(? NCS) = 288 cm?1 there is a good fit of calculated and experimental data, resulting in the nephelauxetic series: F? > CI? > SCN? > Br? > NCS? > I?.  相似文献   

2.
Preparation and characterization of bondisomeric bromorhodanorhenates(IV) The new compounds [ReBr5(SCN)]2?, [ReBr5(NCS)]2?, cis/tr.-[ReBr4(NCS)(SCN)]2?, cis-[ReBr4(NCS)2]2?, mer-[ReBr3(NCS)3]2? are prepared from [ReBr6]2? by ligand exchange with NaSCN, KSCN, or (SCN)2 in organic solvents and isolated by ion exchange chromatography on DEAE cellulose. The bondisomers are significantly distinguished by the frequencies of inner ligand vibrations: vCN(S) > vCN(N), vCS(N) > vCS(S), δNCS δSCN. The electronic absorption spectra measured at 10 K exhibit in the region 5700 to 15300 cm?1 all intraconfigurational transitions (t2g3) splitted into 8 Kramers doublets by lowered symmetry (C4v, C2v, Cs) and spin orbit coupling. The O–O-transitions are deduced form vibrational fine structure and confirmed by electronic Raman bands in some cases. The magnetic moments are in the range of 3.0 to 3.9 B.M.  相似文献   

3.
Preparation of Halogeno Pyridine Rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl; n = 1?3) Crystal Structures of trans-[(C4H9)4N][ReBr4(Py)2], mer-[ReCl3(Py)3], and mer- [ReBr3(Py)3] The mixed halogeno-pyridine-rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl), n = 1?3, have been prepared for the first time by reaction of the tetrabutylammoniumsalts (TBA)2[ReX6] (X = Br, Cl) in pyridine with (TBA)BH4 and separation by chromatography on Al2O3. Apart from the monopyridine complexes only the trans and mer isomers are formed from the bis-and tris-pyridine compounds. The X-ray structure determinations of the isotypic neutral complexes mer- [ReX3(Py)3] (monoclinic, space group P 21/n, Z = 4; for X = Cl: a = 9,1120(8), b = 12,5156(14), c = 15,6100(13) Å, β = 91,385(7)°; for X = Br: a = 9,152(5), b = 12,852(13), c = 15,669(2) Å, β = 90,43(2)°) reveal, due to the stronger trans influence of pyridine compared with Cl and Br, that the Re? X distances in asymmetric Py? Re? X3 axes with ReCl3 = 2,397 Å and ReBr3 = 2,534 Å are elongated by 1,3 and 1% in comparison with symmetric X1? Re? X2 axes with ReCl1 = ReCl2 = 2,367 Å and ReBr1 = 2,513 and ReBr2 = 2,506 Å, respectively. The Re? N bond lengths are roughly equal with 2,12 Å. Trans-(TBA)[ReBr4(Py)2] crystallizes triclinic, space group P1 , a = 9,2048(12), b = 12,0792(11), c = 15,525(2) Å, α = 95,239(10), β = 94,193(11), γ = 106,153(9)°, Z = 2. The unit cell contains two independent but very similar complex anions with approximate D2h(mmm) point symmetry.  相似文献   

4.
Preparation and spectroscopic characterization of the decahalogenodirhenates(IV), [Re2X10]2?, X = Cl, Br On heating of [ReX6]2? with trifluoroacetic acid/trifluoroacetic anhydride (1 : 1), the edge-sharing bioctahedral anions [Re2X10]2?, X = Cl, Br are formed, which IR and Raman spectra are assigned according to point group D2h. The bands are found in three characteristic regions; at high wavenumbers stretching vibrations with terminal ligands v(ReClt): 367–321, v(ReBrt): 242–195; in an intermediate region with bridging ligands v(ReClb): 278–250, v(ReBrb): 201–167 cm?1, and at distinct lower frequencies the deformation modes. The absorption spectra of the dirhenates are distinguished in the region 600–1400 nm by eight intraconfigurational transitions with a slight bathochromic shift and higher intensities in comparison to the monomeric complexes. Due to a stronger bonding of the terminal ligands the energy of the charge transfer bands is lowered by about 4 000 cm?1, too. The magnetic moments are 3.32 and 3.81 B.M./ReIV for [Re2Cl10]2? and [Re2Br10]2?, respectively.  相似文献   

5.
Preparation and Spectroscopic Characterization of Bond-Isomeric Halogenorhodanoosmates(IV) By oxidation of tr.-[OsCl4BrI]2? or tr.-[OsCl4I2]2? with (SCN)2 in CH2Cl2, by substitution of [OsCl5I]2? with SCN? or [OsCl5(NCS)]2? with F? in toluene and by reaction of [OsF5Cl]2? with (SCN)2 in CH2Cl2 the following bondisomers are prepared: tr.-[OsF4Cl(NCS)]2?/tr.-[OsF4Cl(SCN)]2?, tr.-[OsFCl4(NCS)]2?/tr.-[OsFCl4(SCN)]2?, tr.-[OsCl4Br(NCS)]2?/tr.-[OsCl4Br(SCN)]2?, tr.-[OsCl4I(NCS)]2?/tr.-[OsCl4I(SCN)]2?,tr.-[OsCl4(NCS)2]2?/tr.-[OsCl4(NCS)(SCN) ]2?/tr.-[OsCl4(SCN)2]2?, [OsBr5(NCS)]2?/[OsBr5(SCN)]2? and tr.-[OsBr4(NCS)(SCN)]2?. All complexes are isolated as pure compounds by ion exchange chromatography on DEAE-cellulose. In the IR and Raman spectra νCN(S), νCS(N) and δNCS are found at higher wave numbers than νCN(N), νCS(S) and δSCN. According to spin orbit coupling and to lowered symmetry (D4h, C4v) the splitted intraconfigurational transitions are observed at 10 K as weak bands in the regions 600, 1000, 2000 nm. The O? O transitions are calculated from vibrational fine structure and in some cases are confirmed by electronic Raman bands with the same frequencies. The energy niveaus deduced with ζ(OsIV) = 3200 cm?1 and the calculated Racah parameters B are in good agreement with the barycenters of the observed multiplets for D4h and C4v symmetry.  相似文献   

6.
Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of ( n -Bu4N)2[ReBr5(NCS)] and ( n -Bu4N)2[ReBr5(NCSe)] The X-ray structure determinations on single crystals of (n-Bu4N)2[ReBr5(NCS)] ( 1 ) (monoclinic, space group P21/n, a = 10.9860(9), b = 11.6860(7), c = 35.551(3) Å, β = 91.960(9)°, Z = 4) and (n-Bu4N)2[ReBr5(NCSe)] ( 2 ) (monoclinic, space group P21/n, a = 11.0208(15), b = 11.7418(16), c = 35.621(12) Å, β = 92.003(18)°, Z = 4) reveal that the thiocyanate and the selenocyanate group are bonded with the Re–N–C angle of 168.5° ( 1 ) and 169.9° ( 2 ). Based on the molecular parameters of the X-ray determinations the IR and Raman spectra have been assigned by normal coordinate analysis. The valence force constants fd(ReN) are 1.81 ( 1 ) and 1.75 mdyn/Å ( 2 ).  相似文献   

7.
Preparation and Spectroscopic Characterization of Bondisomeric Halogenoselenocyanatoosmates (IV) The new compounds [OsCl5(NCSe)]2?, [OsCl5(SeCN)]2?, tr.-[OsCl4(NCSe)(SeCN)]2?, tr.-[OsCl4I(NCSe)]2? and tr.-[OsCl4I(SeCN)]2? are prepared from [OsCl5I]2? and tr.-[OsCl4I2]2? by oxidative ligand exchange with (SeCN)2 or by reaction with suspended Pb(SeCN)2 in CH2Cl2 and isolated by ion exchange chromatography on DEAE cellulose. The bondisomers are significantly distinguished by the frequencies of innerligand vibrations: νCN(Se), νCN(N), νCSe(N) > νCSe(Se), δNCSe >, δSeCN. The electronic spectra measured at 10 K on the solid salts exhibit in the region 450–650 nm intensive Se → Os and N → Os charge transfer bands. Essentially weaker intraconfigurational transitions (t) are observed near to 2000 and 1000 nm, splitted by lowered symmetry (C4v) and spin orbit coupling. Only some of the 0–0-transitions may be assigned by measuring electronic Raman bands with the same frequencies.  相似文献   

8.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of the Linkage Isomeric Chlororhodanoiridates(III) trans-[IrCl2(SCN)4]3? and trans-[IrCl2(NCS)(SCN)3]3? By treatment of Na2[IrCl6] with NaSCN in 2N HCl the linkage isomers trans-[IrCl2(SCN)4]3? and trans-[IrCl2(NCS)(SCN)3]3? are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. X-ray structure determinations on single crystals of trans-(n-Bu4N)3[IrCl2(SCN)4] ( 1 ) (monoclinic, space group P21/a, a = 18.009(4), b = 15.176(3), c = 23.451(4) Å, β = 93.97(2)°, Z = 4) and trans-(Me4N)3[IrCl2(NCS)(SCN)3] ( 2 ) (monoclinic, space group P21/a, a = 17.146(5), b = 9.583(5), c = 18.516(5) Å, β = 109.227(5)°, Z = 4) reveal the complete ordering of the complex anions. The via S or N coordinated thiocyanate groups are bonded with Ir? S? C angles of 105.7–109.7° and the Ir? N? C angle of 171.4°. The torsion angles Cl? Ir? S? C and N? Ir? S? C are 3.6–53.0°. The IR and Raman spectra of ( 1 ) are assigned by normal coordinate analysis using the molecular parameters of the X-ray determination. The valence force constants are fd(IrS) = 1.52 and fd(IrCl) = 1.72 mdyn/Å.  相似文献   

9.
Complexes of Rhenium with Planar ReN2S2 Rings. Syntheses and Crystal Structures of AsPh4[ReCl4(N2S2)] and PPh4[ReBr4(N2S2)] The complex [ReCl4(N2S2)]? can be obtained as PPh4 or AsPh4 salt by the action of S(NSiMe3)2 and of diphenylacetylene, respectively, on the chlorothionitrene complex [ReCl4(NSCl)2]?. Another method of synthesis is the reaction of [ReCl3(NSCl)2(POCl3)] with SbPh3. [ReBr3(N2S2)]2 is obtained from excess Me3SiBr and [ReCl3(NSCl)2(POCl3)]. The anionic complex [ReBr4(N2S2)]? forms from either [ReCl4(NSCl)2]? or [ReCl4(N2S2)]? with Me3SiBr. All compounds are black, diamagnetic, and sensitive to moisture; the PPh4 and AsPh4 salts are soluble in CH2Cl2 and CH2Br2. The IR spectra are reported. The crystal structures of AsPh,4[ReCl4(N2S2)] and PPh4[ReBr4(N2S2)] were determined by X-ray diffraction. AsPh4[ReCl4(N2S2)]: space group P2/n, Z = 2, a = 1244.5, b = 1429.3, c = 791.1 pm, γ = 96.89° (1715 observed reflexions, R = 0.082). PPh4[ReBr4[ReBr4(N2S2)]: space group P21/n, Z = 4, a = 961.7, b = 1397.4, c = 2205.7 pm, β = 102.10° (1787 observed reflexions, R = 0.073). In both compounds the [ReX4(N2S2)]? anions have the same type of structure, the Re atoms forming part of planar ReN2S2 rings; the bond lengths are ReN 177 pm, NS 152 pm, and SS 259 for the chloro compound and ReN 184 pm, NS 153 pm, and SS 264 pm for the bromo compound. In AsPh4[ReCl4(N2S2)] the cations are stacked to form columns in the c-direction; in PPh4[ReBr4(N2S2)], there is considerable distortion form this packing principle.  相似文献   

10.
Preparation and Characterization of the Pentammine Complexes [Os(NH3)5(NCS)]2+ and [Os(NH3)5(NCSe)]2+ The new pentammine complexes [Os(NH3)5(NCS)]2+ and [Os(NH3)5(NCSe)]2+ are prepared from the reaction of [Os(NH3)5(CF3SO3)](CF3 SO3)2 with NH4SCN and KSeCN, respectively, in acetone, and subsequent purification by ion exchange chromatography on carboxymethyl cellulose. Evidence of N-bonding in both cases is given by the vibrational spectra, indicating that Os3+ is in terms of Lewis acidity harder than Ru3+, Rh3+, and Ir3+. I.r. and Raman spectra are interpreted according to local C4v symmetry around Os, and the presumed assignments are confirmed by comparison with the i.r. spectra of the perdeuterated compounds. In the electronic spectra of both complexes charge transfer bands at 412 nm (NCS) and 498 nm (NCSe) are observed, respectively. Further weak absorptions near 4500 and 5100 cm?1, which are in correlation with electronic Raman bands, are assigned to intraconfigurational transitions within the 2T2g (Oh) ground term, split into three Kramers doubletts by spin-orbit coupling and lowered symmetry. Electrochemical measurements demonstrate a stabilisation of +III and +II oxidation states by π-back donation to —NCS and —NCSe ligands.  相似文献   

11.
《Polyhedron》2005,24(3):419-426
The reactions of [NBu4]2[ReX5(NO)] (X = Cl, Br) with triphenylstibine have been examined and three new rhenium complexes – [ReCl2(NO)(SbPh3)3] (1), [ReBr2(NO)(SbPh3)3] (2) and [ReBr2Cl(SbPh3)3] (3) – have been obtained. The last one has been isolated in a low yield during slow recrystallization of the complex 2 from a mixture of chloroform and ethanol. The stibine rhenium nitrosyls have been characterized by IR and UV–vis spectroscopy. The X-ray structures of 1 and 3 have been determined. The geometric parameters of 1 have been examined using the density functional theory (DFT) method.  相似文献   

12.
Preparation, Mössbauer and Vibrational Spectra of the Complexes [SnCl4F]?, [SnCl4(NCS)]?, and [SnCl4(NCS)2]2? N(CH2)4F and N(CH2)4SCN react in liquid SO2 with SnCl4 yielding the adducts [N(CH3)4][SnCl4F] (I), [N(CH3)4][SnCl4(NCS)] (II) and [N(CH3)4]2[SnCl4(NCS)2] (III).respectively. Mössbauer and vibrational spectra indicate for the anion of I a fluoro-bridged species, which is probably tetrameric like the isoelectronic SbCl4F. For II dimeric moieties are proposed with bridging S-atoms, while [SnCl4(NCS)2]2? has an octahedral structure with N-bonded isothiocyanate groups in the trans-positions.  相似文献   

13.
Preparation, Vibrational Spectra, and Normal Cooordinate Analysis of mer-[OsCl3I(NCS)2c]2? and Crystal Structures of two Modifications of mer-(Ph4As)2[OsCl3I(NCS)2c] By treatment of cis-/trans-[OsCl4I2]2? or fac-[OsCl3I3]2? with (SCN)2 in dichloromethane mixtures of different linkage isomers are formed, from which mer-[OsCl3I(NCS)]2? has been isolated by ion exchange chromatography on diethylaminoethyl cellulose. With tetraphenylarsonium ions mer-(Ph4As)2[OsCl3I(NCS)2c] crystallizes in two different modifications. From acetone solution the high-temperature form α precipitates above ?10°C, the low-temperature form β below, ?65°C. The X-Ray structure determinations on single crystals of α-mer-(Ph4As)2[OsCl3I(NCS)2c] (triclinic, space group P 1 , a = 10.245(5), b = 11.690(5), c = 22.027(5) Å, α = 83.650(5)°, β = 85.734(5)°, γ = 72.566(5)°, Z = 2) and β-mer-(Ph4As)2[OsCl3I(NCS)2c] (triclinic, space group P 1 , a = 10.959(5), b = 11.122(5), c = 21.745(5) Å, α = 97.677(5)°, β = 92.339(5)°, γ = 104.712(5)°, Z = 2) reveal the ordering of the complex anions, which significantly differ in their geometry. The via N coordinated thiocyanate groups exhibit Os? N? C angles of 172.7° and 173.3° (α) and of 164.4° and 175.4° (β). Using the molecular parameters of the X-Ray determinations the low temperature (10 K) IR and Raman spectra of the (n-Bu4N) salt of the complex anion are assigned by a normal coordinate analysis based on a modified valence force field. The valence force constants are fd(OsN) = 1.66 and 1.64 mdyn/Å. Taking into account the trans influence a good agreement between observed and calculated frequencies is achieved.  相似文献   

14.
Preparation and Crystal Structure of trans-(Ph4As)2[OsCl2(NCS) (SCN) ], Vibrational Spectra and Normal Coordinate Analysis By treatment of trans-[OsCl2I4]2? with (SCN)2 in dichloromethane a mixture of different linkage isomers is formed, from which trans-[OsCl2(NCS)(SCN)]2? has been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The X-Ray structure determination on a single crystal of trans-(Ph4As)2[OsCl2(NCS)(SCN)] (triclinic, space group P 1 , a = 12.505(5), b = 12.056(5), c = 19.833(5) Å, α = 108.047(5)°, β = 91.964(5)°, γ = 117.048(5)°, Z = 2) reveals that two cis-positioned Thiocyanate(N) groups are coordinated with Os? N? C angles of 172.1° and 173.0° and two cis-positioned Thiocyanate(S) groups are coordinated with Os? S? C angles of 106.9° and 108.7°. Using the molecular parameters of the X-Ray determination the low temperature (10 K) IR and Raman spectra of the (n-Bu4N) salt of the linkage isomer are assigned by a normal coordinate analysis based on a modified valence force field. The valence force constants are fd(OsN) = 1.63 and fd(OsS) = 1.30 mdyn/Å. Taking into account the trans influence a good agreement between observed and calculated frequencies is achieved.  相似文献   

15.
Summary Treatment of ReX(CO)3(dppm) [X = Cl or Br; dppm = bis(diphenylphosphino)methane] with halogens gives the seven-coordinate ReX3(CO)2(dppm) complexes as well as ReBr4(dppm). The ReCl3(CO)(bipy), ReBr4(bipy) and ReBr3Cl(bipy) complexes and the previously characterised ReX3(CO)2(bipy) have all been isolated from the ReX(CO)3(bipy) — X2 systems, (bipy = 2,2-bipyridyl).  相似文献   

16.
The Crystal Structures of (NH4)2[ReCl6], [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN and [ReCl4(18)(Crown-6)] Brown single crystals of (NH4)2[ReCl6] are formed by the reaction of NH4Cl with ReCl5 in a suspension of diethylether. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN crystallizes as brown crystal plates from a solution of ReCl5 in acetonitrile. Lustrous green single crystals of [ReCl4(18-crown-6)] are obtained by the reaction of 18-crown-6 with ReCl5 in a dichloromethane suspension. All rhenium compounds are characterized by IR spectroscopy and by crystal structure determinations. (NH4)2[ReCl6]: Space group Fm3 m, Z = 4, 75 observed unique reflections, R = 0.01. Lattice constant at ?70°C: a = 989.0(1) pm. The compound crystallizes in the (NH4)2[PtCl6] type, the Re? Cl distance is 235.5(1) pm. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN: Space group P1, Z = 1, 2459 observed unique reflections, R = 0.12. Lattice dimensions at ?60°C: a = 859.0(1), b = 974.2(7), c = 1287.3(7) pm, α = 102.69(5)°, b? = 105.24(7)°, γ = 102.25(8)°. The structure consists of two symmetry-independent [ReCl2(CH3CN)4]+ ions with trans chlorine atoms, [ReCl6]2? ions, and included acetonitrile molecules. In the cations the Re? Cl bond lengths are 233 pm in average, in the anion they are 235 pm in average. [ReCl4(18-crown-6)]: Space group P21/n, Z = 4, 3 633 observed unique reflections, R = 0.06. Lattice dimensions at ?70°C: a = 1040.2(4), b = 1794.7(5), c = 1090.0(5) pm, b? = 108.91(4)°. The compound forms a molecular structure, in which the rhenium atom is octahedrally coordinated by the four chlorine atoms and by two oxygen atoms of the crown ether molecule.  相似文献   

17.
Preparation and Spectroscopic Characterization of Bond Isomeric Halogenoselenocyanato-Osmates(IV) and -Rhenates(IV) By oxidative ligand exchange of appropriate chloro-iodo complexes of OsIV or ReIV with (SeCN)2 in CH2Cl2 or by heterogeneous reaction with Pb(SeCN)2 or AgSeCN in CH2Cl2 the new complexes cis-[OsCl4(NCSe)(SeCN)]2?, tr.-[OsCl4Br(NCSe)]2?, tr.-[OsCl4Br(SeCN)]2?, [ReCl5(NCSe)]2?, [ReCl5(SeCN)]2?, tr.-[ReCl4I(NCSe)]2?, tr.?[ReCl4(NCSe)(SeCN)]2? and tr.?[ReCl4(NCSe)2]2? are formed and isolated as pure compounds by ion exchange chromatography on DEAE-cellulose. The bond isomers are significantly distinguished by the frequencies of innerligand vibrations: n?CN(Se) > n?CN(N); n?CSe(N) > n?CSe(Se); δNCSe > δSeCN. The electronic spectra (10 K) of the solid salts reveal a bathochromic shift for the charge transfer bands of the Se isomers as compared with the corresponding N isomers. The intra-configurational transitions are observed for the OsIV complexes at 600 to 2400 and for the ReIV complexes at 500 to 1600 nm. The 77Se nmr signals of the OsIV bond isomers are registrated for Se binding in the region 970 to 1040 ppm, for N coordination downfield at 1540 to 1640 ppm.  相似文献   

18.
Reactions of [ReX2(η 2-N2COPh-N′,O)(PPh3)2] with 3-methylbenzonitrile give two iso-structural complexes, [ReX2(N2COPh)(CH3PhCN)(PPh3)2] (X?=?Cl, Br). The crystal and molecular structures of [ReCl2(N2COPh)(CH3PhCN)(PPh3)2] (1) and [ReBr2(N2COPh)(CH3PhCN)(PPh3)2]?·?CH2Cl2 (2) were determined. The electronic structures were examined with density functional theory (DFT). The spin-allowed electronic transitions were calculated with the time-dependent DFT method, and the UV-Vis spectrum has been discussed.  相似文献   

19.
Crystal Structures of [ReCl4(PhC?CPh)]2 · 2 CH2Cl2 and PPh4[ReOCl4] Single crystals of [ReCl4(PhC?CPh)]2 · 2 CH2Cl2 were obtained by chilling dilute solutions of the solvate [ReCl4(PhC?CPh)POCl3] in CH2Cl2. PPh4[ReOCl4] was formed by the reaction of the diphenyl acetylene complex [ReCl5(PhC?CPh)] with PPh4Cl · H2O in CH2Cl2 solution. [ReCl4(PhC?CPh)]2 · 2 CH2Cl2: space group P21/c, Z = 2, 2244 observed independent reflexions, R = 0.038. Lattice parameters (19°C): a = 987.2 pm; b = 1533.9 pm; c = 1193.8 pm; β = 90.17° The compound forms centrosymmetrical dimeric molecules with ReCl2Re bridges with Re? Cl distances of 241.2 and 267.6 pm. The longer Re? Cl bond is situated in trans-position to the equatorial, side-on coordinated diphenyl acetylene ligand with mean Re? C distances of 200 pm. PPh4[ReOCl4]: space group P4/n, Z = 2, 1487 observed, independent reflexions, R = 0.047. Lattice parameters (19°C): a = b = 1272.0 pm; c = 771.3 pm. The compound crystallizes in the AsPh4[RuNCl4] type; it consists of [ReOCl4]? anions and PPh4+ cations. The anions are tetragonal with C4v symmetry and bond lengths Re? O = 165.4 pm and Re? Cl = 232.6 pm; the bond angle OReCl is 106.7°.  相似文献   

20.
Preparation and Characterization of Bond-Isomeric Hexakis-(thiocyanato-isothiocyanato)rhodates(III) and Di-μ-thiocyanato-N, S-octathiocyanatodirhodate (III) The reaction of RhCl3 with an aqueous solution of KSCN does not yield pure [Rh(SCN)6]3? as is supposed until now but a mixture of the bond isomers [Rh(NCS)n(SCN)6?n]3?, n = 0–3. By heating the tetrabutylammonium salts N coordination of the ambident SCN? is favoured forming mixtures with n = 0–4. The pure bond isomers are separated by ion exchange chromatography on diethylaminoethyl cellulose. Extracting the mixture (n = 0–3) with triphenylphosphiniminiumchloride from water into CH2Cl2 [Rh2(SCN)10]4? is formed, containing two Rh? SCN? Rh bridges and exclusively S-coordinated terminal ligands. Depending on S or N bonding the IR and Raman spectra show typical vibrations: νCN(N) and νCN(S): 2095–2170, νCS(N): 810–835, νCS(S): 695–710, δNCS: 460–470, δSCN: 425–465, νRhN: 300–340, νRhS: 265–306 cm?1. The application of group theory indicates that for n = 2 and 4 the cis-, for n = 3 the mer-compound exists. Except the inner ligand vibrations the Rh? N and Rh? S valence vibrations are assigned according to the supposed point symmetries. By interaction of trans-positioned ligands characteristic shifts are caused. The isolated complexes may also be distinguished and identified by their electronic spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号