首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nonlinear equations governing relativistic electron beam-surface wave dynamics in dissipative P-S-plasma are derived. The influence of P-plasma on time saturation, amplitude of the wave at saturation and damping factor is analyzed. The obtained results are discussed from the physical point of view.  相似文献   

2.
The dispersion relation for electrostatic ion-cyclotron (EIC) waves in a plasma containing a fraction of negative ions is derived from the fluid picture. Two wave modes are generally possible. Some of their features are investigated.  相似文献   

3.
We consider nonlinear coupling of ion-cyclotron turbulence with low-frequency fast magneto-acoustic perturbations across the external magnetic field in a magnetized plasma. It is found that such coupling leads to instability. The growth rate and the threshold of this instability are calculated.  相似文献   

4.
5.
The relativistic Landau-Maxwell system is the most fundamental and complete model for describing the dynamics of a dilute collisional plasma in which particles interact through Coulombic collisions and through their self-consistent electromagnetic field. We construct the first global in time classical solutions. Our solutions are constructed in a periodic box and near the relativistic Maxwellian, the Jüttner solution.Acknowledgements The research is supported in part by NSF grants.  相似文献   

6.
7.
Under Lagrange coordinates, the relativistic spherical plasma wave in a collisional and warm plasma is discussed theoretically. Within the Lagrange coordinates and using the Maxwell and hydrodynamics equations, a wave equation describing the relativistic spherical wave is derived. The damped oscillating spherical wave solution is obtained analytically using the perturbation theory. Because of the coupled effects of spherical geometry,thermal pressure, and collision effect, the electron damps the periodic oscillation. The oscillation frequency and the damping rate of the wave are related to not only the collision and thermal pressure effect but also the space coordinate. Near the center of the sphere, the thermal pressure significantly reduces the oscillation period and the damping rate of the wave, while the collision effect can strongly influence the damping rate. Far away from the spherical center, only the collision effect can reduce the oscillation period of the wave, while the collision effect and thermal pressure have weak influence on the damping rate.  相似文献   

8.
The heating of a plasma by stimulating plasma electrons as well as plasma ions with two anti-parallel electromagnetic waves under the influence of a uniform static magnetic field is studied using Maxwell's equations and equations of motion. A formula for the power absorption per unit volume of the plasma is derived and effects of collisions and magnitude and orientation of the magnetic field on the beat heating are examined numerically. It is observed that the average power absorption in the absence of ion-neutral collisions in the plasma barely exceeds unity in the units of pure Langmuir mode excitation where as in the presence of ion-neutral collisions the power absorption immediately shoots up to a very high value.  相似文献   

9.
Journal of Experimental and Theoretical Physics - The stability of magnetized flows of a nonuniformly rotating layer of an electrically conducting nanofluid is investigated with regard to the...  相似文献   

10.
The plasma erosion opening switch (PEOS) has been studied with the aid of the ANTHEM implicit simulation code. This switch consists of fill plasma injected into a transmission line. The plasma is ultimately removed by self-electrical forces, permitting energy delivery to a load. Here, ANTHEM treats the ions and electrons of the fill plasma and the electrons emitted from the transmission-line cathode as three distinct Eulerian fluids-with electron inertia retained. This permits analysis of charge separation effects, and avoids the singularities that plague conventional MHD codes at low density. E and B fields are computed by the implicit moment method, allowing for time steps well in excess of the electron plasma period ?t >> ?p-1, and cells much wider than a Debye length, ?x >> ?D. Switch dynamics are modeled as a function of the driving electrical pulse characteristics, the fill plasma parameters, and the emission properties of the transmission line walls-for both collisionless and anomalously collisional electrons. Our low-fill-density (ne ? 4 × 1012 electrons/cm3) collisionless calculations are in accord with earlier particle code results. Our high-density computations (ne ? 2 × 1013 electrons/cm3) show the opening of the switch proceeding through both ion erosion and magnetic pressure effects. The addition of anomalous electron collisions is found to diffuse the driving B field into the fill plasma, producing broad current channels and reduced magnetic pressure effects, in some agreement with NRL experimental measurements.  相似文献   

11.
Wave properties and instabilities in a magnetized, anisotropic, collisionless, rarefied hot plasma in fluid approx‐imation are studied, using the 16‐moments set of the transport equations obtained from the Vlasov equations. These equations differ from the CGL‐MHD fluid model (single fluid equations by Chew, Goldberger, and Low [5,9]) by including two anisotropic heat flux evolution equations, where the fluxes invalidate the double polytropic CGL laws. We derived the general dispersion relation for linear compressible wave modes. Besides the classic incompressible fire hose modes there appear four types of compressible wave modes: two fast and slow mirror modes – strongly modified compared to the CGL model – and two thermal modes. In the presence of initial heat fluxes along the magnetic field the wave properties become different for the waves running forward and backward with respect to the magnetic field. The well known discrepancies between the results of the CGL‐MHD fluid model and the kinetic theory are now removed: i) The mirror slow mode instability criterion is now the same as that in the kinetic theory. ii) Similarly, in kinetic studies there appear two kinds of fire hose instabilities ‐ incompressible and compressible ones. These two instabilities can arise for the same plasma parameters, and the instability of the new compressible oblique fire hose modes can become dominant. The compressible fire hose instability is the result of the resonance coupling of three retrograde modes ‐ two thermal modes and a fast mirror mode. The results can be applied to the theory of solar and stellar coronal and wind models (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The drift-resistive modes in general toroidal geometry are studied analytically and numerically. The study includes the effects from ion acoustic couplings, ion polarization drift, and perpendicular resistivity. These effects can completely stabilize the drift-resistive modes. The perpendicular resistivity is effective in stabilizing mainly the drift interchange modes, while the ion acoustic couplings are the dominant mechanism for the stabilization of the drift-tearing modes. From the ion polarization drift effects of the perpendicular compression, the critical value of magnetic energy A, saturates for a moderate diamagnetic drift frequency region. The favorable average curvature is a stabilizing factor for the drift-tearing modes with the criterion of ?' < ?c, but an instability from unfavorable curvature even with ?' < 0 exists in the semicollisional region.  相似文献   

13.
14.
Using the concet of " normal mode states" of a plasma, a state feedback scheme is developed by which eigenfrequencies can be placed in stable half of the complex frequency plane. All the dynamic states of a plasma instability are approximately recovered from a single properly placed sensor signal via a state reconstructor. Then state feedback is used based on this approximate set of states. The resulting control information is introduced into the plasma via a single properly placed suppressor to stabilize all unstable modes without destabilizing any originally stable ones.  相似文献   

15.
The quasineutral presheath layer at the boundary of fully ionized, collisional, and magnetized plasma with an ambipolar flow to an adjacent absorbing wall was analyzed using a two fluid magneto‐hydrodynamic model. The plasma is magnetized by a uniform magnetic field B , imposed parallel to the wall. The analysis did not assume that the dependence of the particle density on the electric potential in the presheath is according to the Boltzmann equilibrium, and the dependence of the mean collision time τ on the varying plasma density within the presheath was not neglected. Based on the model equations, algebraic expressions were derived for the dependence of the plasma density, electron and ion velocities, and the electrostatic potential on the position within the presheath. The solutions of the model equations depended on two parameters: Hall parameter (β ), and the ratio (γ ), where γ = ZTe /(ZTe + Ti ), and Te , Ti and Z are the electron and ion temperatures and ionicity, respectively. The characteristic scale of the presheath extension is several times ri /β , where ri is the ion radius at the ion sound velocity. The electric potential could have a non monotonic distribution in the presheath. The ions are accelerated to the Bohm velocity (sound velocity) in the presheath mainly near the presheath‐sheath boundary, in a layer of thickness ~ri /β . The electric field accelerates the ions in the whole presheath if their velocity in the wall direction exceeds their thermal velocity. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
New electrostatic instabilities in the plasma shock front are reported. These instabilities are driven by the electro- static field which is caused by charge separation and the parameter gradients in a plasma shock front. The linear analysis to the high frequency branch of electrostatic instabilities has been carried out and the dispersion relations are obtained numerically. There are unstable disturbing waves in both the parallel and perpendicular directions of shock propagation. The real frequencies of both unstable waves are similar to the electron electrostatic wave, and the unstable growth rate in the parallel direction is much greater than the one in the perpendicular direction. The dependence of growth rates on the electric field and parameter gradients is also presented.  相似文献   

17.
The thermosolutal instability of a plasma is studied to include the effects of coriolis forces and the finiteness of ion Larmor Radius in the presence of transverse magnetic field. It is observed that the effect of rotation is destabilizing only in a typical case. However, the F. L. R. and stable solute gradient have stabilizing effects on stationary convection irrespective of the presence of coriolis forces.  相似文献   

18.
陈德应  王骐 《光学学报》1997,17(11):518-1527
将激光感生碰撞电荷看作一个四体系统,发展了激光感生碰撞电荷电荷的微扰理论,以独立原子和离子的复合态波函数作为激光感生碰撞体系的基组函数,得到了体系态振幅的运动方程。利用激光感生碰撞电荷交换的微扰理论,对Ca^+-Sr间激光感生碰撞电荷交换进行了数值计算,并与Green等人的实验结果进行了比较。  相似文献   

19.
托卡马克高约束模运行可大幅提高磁约束核聚变等离子体约束品质,该模式下的等离子体不稳定性研究对于控制约束和保护装置有重要意义。本文主要介绍了高约束模及其边缘等离子体不稳定性的研究概况,并重点介绍了中国环流器二号A托卡马克装置上关于高约束模转换、边缘局域模特征和控制方法、台基区不稳定性和台基饱和机制等方面的研究进展。研究结果表明,实验上有望通过粒子和射频波注入等外部激励的方法,影响台基区等离子体湍流,进行控制台基动力学演化以及ELM,实现既保持高约束又降低高热负荷的等离子体稳态运行。  相似文献   

20.
This paper presents the Enhanced Raman scattering of a elliptical laser beam in a collisional plasma. We have considered the mechanism of non‐uniform heating of carriers along the wave‐front, which is important in collisional plasma. The nonlinearity arising through non‐uniform heating leads to redistribution of carriers, which modifies the background plasma density profile in a direction transverse to pump beam axis. This modification in density effects the incident laser beam, plasma wave and back‐scattered beam. Non‐linear differential equations for the beam width parameters of pump laser beam, plasma wave and back‐scattered beam are set up and solved numerically. Numerical results predict the effect of self‐focusing of waves on the back‐scattered beam (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号