首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微乳液聚合   总被引:9,自引:0,他引:9  
介绍了微乳化工艺和助乳化剂对单体液滴大小、乳化剂的吸附、乳液稳定性、聚合动力学和乳胶粒子大小及分布的影响,并讨论了单体亚微液滴成核机理。  相似文献   

2.
Polymeric microspheres have been used in a broad range of applications from chromatographic separation techniques to analysis of air flow over aerodynamic surfaces. The preparation of microspheres from many polymer families has consequently been extensively studied using a variety of synthetic approaches. Although there are a myriad of polymeric microsphere synthesis methods, free‐radical initiated emulsion polymerization is one of the most common techniques. In this work, poly(styrene‐co‐methyl methacrylate) microspheres were synthesized via surfactant‐free emulsion polymerization. The effects of co‐monomer composition and addition time on particle size distribution, particle formation, and particle morphology were investigated. Particles were characterized using dynamic light scattering and scanning electron microscopy to gain further insight into particle size and size distributions. Reaction kinetics were analyzed through consideration of characterization results. A particle formation mechanism for poly(styrene‐co‐methyl methacrylate) microspheres was proposed based on characterization results and known reaction kinetics. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2249–2259  相似文献   

3.
An analytical ultracentrifugation technique for the determination of particle-size distributions is used which applies an ultracentrifuge with a scanning absorption optical system. Radial scans during a sedimentation velocity experiment yield the particle-size distribution. If the particles consist of several defined monodisperse species, we show that for dense inorganic colloids the resolution of the particle-size distribution is in the angström range. This is demonstrated for a Pt colloid (0.4-2 nm) and unstabilized ZnO (4-9 nm) during particle growth. Such highly resolved particle-size distributions show that the analytical ultracentrifuge is an excellent and rapid tool for the study of particle growth mechanisms as no other fractionating analytical technique with almost atomar resolution is known up to now. Some potential applications arising from the applied ultracentrifuge technique are suggested.  相似文献   

4.
李昊阳  单国荣 《高分子学报》2008,(12):1175-1180
以甲基丙烯酸十二氟庚酯(DFMA)、甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)为共聚单体,不加任何传统的助稳定剂进行细乳液聚合.在共聚体系中,由于DFMA在初期反应生成的聚合物中占有较高比例,初期形成的少量低聚物可以起到助稳定剂作用,因此DFMA作为反应单体的同时,又可以原位生成助稳定剂,维持单体液滴或乳胶粒子的稳定,以细乳液聚合的方式进行聚合.分别采用油溶性引发剂(AIBN)和水溶性引发剂(KPS)引发聚合,考察细乳液聚合过程中乳胶粒子粒径的变化规律,粒径由初始时刻的400nm左右减少到80nm左右,最终与使用传统的助稳定剂得到的粒径相当.提出了原位生成助稳定剂的细乳液聚合机理,并使用交联剂验证了提出的原位生成助稳定剂的细乳液聚合机理.  相似文献   

5.
A low-molecular-weight liquid polybutadiene (LPB) is employed as the sole co-stabilizer in miniemulsion polymerization of styrene in present work. Results indicate that the LPB can be used as an effective co-stabilizer to retard the diffusional degradation of monomer droplets in miniemulsion system and get stable miniemulsions. When the miniemulsions were initiated, particle formation occurred predominantly by monomer droplet nucleation. Moreover, the effects of various reaction parameters on the polymerization kinetics and the nucleation mechanisms were also investigated. These parameters include the level of LPB ([LPB]) and the concentrations of SDS ([SDS]) and potassium persulfate ([KPS]). It is shown that the polymerization rate indicates little dependence on [LPB], while increases with increasing [SDS] and [KPS]. Competition between droplet nucleation and homogeneous nucleation occur in the course of polymerization, but droplet nucleation becomes more important by increasing [LPB] or decreasing [SDS]. Furthermore, the result that the particle size is rather insensitive to changes in [KPS] provides the most compelling evidence for the dominant droplet nucleation.  相似文献   

6.
用氧化还原引发剂(NH4)2S2O8/NaHSO3研究了苯乙烯(St)/丙烯酸丁酯(BA)低温下的细乳液共聚合,细乳液单体液滴在亚微米级(100~400nm).测定了聚合过程中粒子大小及分布的变化,发现细乳液聚合随引发剂、乳化剂和共乳化剂浓度的增加,乳胶粒子尺寸变小,分布变宽,并且比相同条件下传统乳液聚合的粒子大.计算了聚合过程中粒子数变化规律及乳化剂覆盖率,讨论了细乳液与传统乳液中引发剂、乳化剂对反应过程的影响及成核机理的差异.  相似文献   

7.
Initiation of polymerization in styrene oil-in-water microemulsions by water-soluble potassium persulfate of oil-soluble 2,2′-azobis-(2-methyl butyronitrile) at 70°C gave stable latexes which were bluish and less translucent than the original microemulsions. The effects of initiator concentration, polymerization temperature, and monomer concentration on the kinetics, particle size distributions, and molecular weight distributions were investigated. The kinetics of polymerization were measured by dilatometry. In all cases, the polymerization rate shows only two intervals, which increased to a maximum and then decreased. There was no apparent constant rate period and no gel effect. A longer nucleation period was found for polymerizations initiated by potassium persulfate as compared to 2,2′-azobis-(2-methyl butyronitrile). The small latex particle size (20–30 nm) and high polymer molecular weight (1–2 × 106) implies that each latex particle consists of two or three polystyrene molecules. The maximum polymerization rate and number of particles varied with the 0.47 and 0.40 powers of potassium persulfate concentration, and the 0.39 and 0.38 powers of 2,2′-azobis-(2-methyl butyronitrile) concentration, respectively. This is consistent with the 0.4 power predicted by Smith–Ewart Case 2 kinetics. Microemulsion polymerizations of styrene–toluene mixtures at the same oil-water phase ratio gave lower polymerization rates and lower molecular weights, but the same latex particle size as with styrene alone. A mechanism is proposed, which comprised initiation and polymerization in the microemulsion droplets, by comparing the kinetics of microemulsion polymerization with conventional emulsion and miniemulsion polymerization systems.  相似文献   

8.
The inverse emulsion polymerization of aqueous solution of acrylamide in toluene has been studied at 40°C using a blend of surfactants as emulsifying system and oil soluble azo initiators. The azo compound partition between the phases has been measured and the effects of their nature and concentration on the polymerization kinetics have been investigated. The influence of other parameters on the kinetics and particle size of the inverse latex have also been investigated: the nature and amount of the emulsifier system, the stirring rate, and the presence of oil-soluble inhibitor. The particle-size analysis using electron microscopy or dynamic light-scattering methods showed the presence of two populations of particles in the initial monomer emulsion and in the final inverse latex: one with very tiny particles (20 nm diam) and the other with larger particles (80–400 nm diam) which is highly polydispersed. The average size of these large particles undergoes a sharp decrease at a certain percent conversion depending upon the stirring rate. The evolution of the particle size distribution may result from a balance between coalescence and dispersion of the emulsion droplets under the effect of prevailing shear rate due to agitation. Concerning the initiation process, the very low solubility of the azo compound in the aqueous solution, together with the effect of the stirring rate and the presence of an oil-soluble inhibitor on the polymerization kinetics lead to the conclusion that most of the initiaton originates from the capture of radicals or oligomeric radicals produced in the oil phase or in the interfacial layer.  相似文献   

9.
Multiple and diverse applications have been recently found for miniemulsions and miniemulsion polymerization. In this work, miniemulsion polymerization is presented as a suitable technique for the preparation of high‐solid‐content latices with large particle sizes. Monomer miniemulsions were prepared with a high‐pressure homogenizer, and droplet sizes of 200–700 nm were obtained. Latexes with particle sizes larger than the sizes commonly accepted for miniemulsion polymerization were obtained. With fixed operational conditions of the homogenizer, the type of stabilizer was the key parameter determining the droplet size and the droplet size distribution. The particle size of the latices obtained by miniemulsion polymerization indicated that the particles were mainly formed by droplet nucleation. Latexes obtained by this process have multiple applications, including use as seeds in the polymerization of high‐solid‐content latices. This article shows that potential new applications for miniemulsion polymerization are far from being exhausted. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4222–4227, 2004  相似文献   

10.
A novel method is described for the measurement of the droplet size distributions produced by nebulizers commonly employed in analytical atomic spectroscopy. It is shown theoretically that, at sufficiently high concentrations of dissolved sodium chloride, the evaporation of water from droplets as small as 0.5 μm in diameter may be reduced to a negligible level. When evaporation is reduced by the presence of a dissolved salt, a conventional cascade impactor may be used to elucidate the droplet size distribution. Empirical observations confirm that, at a sodium concentration of 10,000 μg ml?1, evaporation is negligible: the method may be used to study particle size distributions over the size range 0.5–10 μm.  相似文献   

11.
Particle number and size data from a series of seeded, emulsifier-free, vinyl acetate emulsion polymerization experiments have been analyzed with the aid of polymerization and particle growth models. A secondary population of particles, with a significantly greater number concentration than the seed, was nucleated in all experiments. The two populations (seed and new) had rather narrow size distributions and large diameters. Hence the reactions were in the area normally associated with Smith–Ewart Case III kinetics. Water-phase termination reactions can be important in this reaction region but radical desorption from such large particles does not significantly influence the kinetics. The results of the analysis were used to evaluate the magnitude of water-phase termination; to estimate radical capture coefficients; and to evaluate competitive particle growth.  相似文献   

12.
In emulsion polymerization, the formation of particles has an important effect on the rate of reaction and on the final properties of the latex. To investigate particle nucleation mechanisms in emulsion polymerization it is necessary to establish the initial conditions of the emulsified system before the reaction takes place. This research reports on a technique to continuously monitor the droplet size distribution of liquid-liquid emulsions using spectroscopy. The on-line particle characterization methodology is based on an integrated sampling and dilution strategy combined with spectroscopy methods. It is shown that the sampling system integrated with a multiwavelength turbidity detector provides reliable estimates of droplet populations as function of the dispersed phase concentration in emulsions of saturated hydrocarbons. The results provide not only the groundwork necessary for the elucidation of particle nucleation during emulsion polymerization process but also suggests the potential of this combined technology to further our understanding of liquid-liquid emulsions.  相似文献   

13.
Successful miniemulsion polymerizations of very hydrophobic monomers, such as lauryl methacrylate and 4‐tert‐butyl styrene, initiated by very hydrophobic (i.e., completely water‐insoluble) lauroyl peroxide, are reported. Conversion‐time histories, as well as final latex properties, for example, the particle size distribution, are different from similar miniemulsion polymerizations in the presence of water‐soluble initiators. The observed differences can be attributed to the average number of radicals inside a miniemulsion particle; the system obeys Smith‐Ewart case I rather than Case II kinetics. Albeit the pairwise generation of radicals in the monomer droplets, substantial polymerization rates are observed. Water, present in the droplet interfacial layer, is supposed to act as chain transfer agent. The product of a chain transfer event is a hydroxyl radical, exit of this hydroxyl radical allows for the presence of single radicals in particles. The proposed mechanisms allow for agreement between initial droplet and final particle size distributions in miniemulsion polymerization initiated by lauroyl peroxide. © 2016 The Authors Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2731–2745  相似文献   

14.
Poly(glycidyl methacrylate) [poly(GMA)] microspheres of narrow size distribution were prepared in a simple one‐step procedure by dispersion radical polymerization. Depending on the solvent used, poly(GMA) particle size could be controlled in the range of 0.5–4 μm by changing the solubility parameter of the reaction mixture. In N,N′‐dimethylformamide (DMF)/methanol mixture, the particle size increased and the size distribution broadened with decreasing initial solubility parameter. While in the DMF/methanol solvent system, hydroxypropyl cellulose (HPC) or cellulose acetate butyrate (CAB) were taken as steric stabilizers of the dispersion polymerization, poly(vinylpyrrolidone) (PVP) was used in alcoholic media. Contrary to the DMF/methanol system, narrow particle size distributions were obtained with PVP‐stabilized polymerizations in ethanolic, methanolic, propan‐1‐olic or butan‐1‐olic medium. Both the particle size and polydispersity were reduced with increasing stabilizer concentration. If lower molecular‐weight PVP was used, larger microspheres were obtained. Poly(GMA) samples prepared in a neat alcoholic medium virtually quantitatively retained oxirane group content after the polymerization. Reactivity of the poly(GMA) microspheres was confirmed by their hydrolysis and aminolysis. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3855–3863, 2000  相似文献   

15.
Solution of polystyrene in styrene were dispersed in an aqueous gel phase comprising sodium lauryl sulfate, cetyl alcohol, and water using an emulsification process known to produce monomer droplet sizes inthe submicron size range (referred to as miniemulsion droplets). The shelf-life stabilities of these miniemulsions were studied to determine their relative droplet sizes, and the emulsions were concommitantly polymerized in an isothermal batch reaction calorimeter. The polymerization kinetics and final particle sizes produced were compared with miniemulsion and conventional emulsion polymerizations prepared using equivalent recipes without the addition of polystyrene. The results indicate that polymerization of miniemulsions prepared from polymer solutions produce significantly different kinetics than both miniemulsion and conventional emulsion polymerizations. In general, a small amount of polymer greatly increases the rate of polymerization and the final number of particles produced in the polymerization to the extent where even conventional polymerizations carried out above the critical micelle concentration of the surfactant polymerize more slowly. The results are explained by considering the system to be comprised of small, stable pre-formed monomer-swollen polymer particles which are able to efficiently capture aqueous phase radicals. This enables the system to produce a large final number of particles, similar to the initial number of pre-formed polymer particles, as opposed to miniemulsions and micelles in which only a relatively small fraction of the initial number of species (droplets or micelles) become polymer particles. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
The effects of concentrations of surfactant (sodium lauryl sulfate [SLS]) and initiator (sodium persulfate [SPS]) on the polymerization of homogenized styrene emulsions, stabilized by SLS/lauryl methacrylate (LMA) or SLS/stearyl methacrylate (SMA), were studied. The rate of polymerization increases with increasing [SLS] or [SPS]. In addition to monomer droplet nucleation, the formation of particle nuclei in the aqueous phase (homogeneous nucleation) plays a crucial role in the polymerization kinetics. In comparison with the LMA containing polymerization system, monomer droplet nucleation becomes more important when the more hydrophobic SMA was used as the costabilizer. Furthermore, the degree of homogeneous nucleation increases with increasing [SPS].  相似文献   

17.
聚二乙烯基苯微球的合成及其表征研究   总被引:5,自引:0,他引:5  
采用分散聚合方法制备了聚二乙烯基苯微球 ,研究了引发剂、稳定剂、单体 溶剂比例和溶剂种类对微球粒径及其分布的影响 ,在适当的条件下可以得到平均粒径较大、粒径分布较窄的微球 .用红外光谱法研究了聚合物微球内稳定剂、悬挂双键以及对位和间位二乙烯基苯含量随聚合过程的进行发生的变化 .测得的微球TG曲线表明 ,聚合物微球具有良好的热稳定性 .  相似文献   

18.
 Stable styrene miniemulsions were prepared by using alkyl methacrylates as the reactive cosurfactant. Like conventional cosurfactants (e.g., cetyl alcohol (CA) and hexadecane (HD)), alkyl methacrylates (e.g., dodecyl methacrylate (DMA) and stearyl methacrylate (SMA)) may act as a cosurfactant in stabilizing the homogenized miniemulsions. Furthermore, the methacrylate group may be chemically incorporated into latex particles in subsequent miniemulsion polymerization. The data of the monomer droplet size, creaming rate and phase separation of monomer as a function of time were used to evaluate the shelf-life of miniemulsions stabilized by sodium dodecyl sulfate in combination with various cosurfactants. Polystyrene latex particles were produced via both monomer droplet nucleation and homogeneous nucleation in the miniemulsion polymerization using CA or DMA as the cosurfactant, with the result of a quite broad particle size distribution. On the other hand, the miniemulsion polymerization with HD or SMA showed a predominant monomer droplet nucleation. The resultant particle size distribution was relatively narrow. In miniemulsion polymerization, the less hydrophobic DMA is similar to CA, whereas the more hydrophobic SMA is similar to HD. Received: 19 November 1996 Accepted: 20 February 1997  相似文献   

19.
Oil soluble azo initiators in combination with water soluble inhibitors were used to extend the particle size limit in studies of the kinetics of successive seeding of monodisperse polystyrene latexes. Monodisperse latexes were prepared up to 2.5 μm in diam using 4.0 mM AMBN and 14.5 mM hydroquinone with a constant 15% emulsifier (Aerosol–MA) surface coverage throughout the seven step sequence. The polymerization kinetics were measured in a piston/cylinder dilatometer designed for microgravity experiments. The Interval III kinetics were dominated by the gel effect although these were affected by the nature of the inhibitor. In general, the overall polymerization rate decreased with increasing particle size (decreasing Np) up to a size of about 1 μm. Thereafter, the kinetics were independent of these variables, exhibiting Smith-Ewart Case 3 (bulk) kinetics. The initiator efficiencies were found to be of the order of 10%, considerably lower than reported for bulk polymerizations.  相似文献   

20.
The batch emulsion polymerization kinetics of styrene (St) initiated by a water-soluble peroxodisulfate in the presence of a nonionic emulsifier was investigated. The polymerization rate versus the conversion curves showed two nonstationary rate intervals, two rate maxima, and Smith–Ewart Interval 2 (nondistinct). The rate of polymerization and number of nucleated polymer particles were proportional to the 1.4th and 2.4th powers, respectively, of the emulsifier concentration. Deviation from the micellar nucleation model was attributed to the low water solubility of the emulsifier, the low level of the micellar emulsifier, and the mixed modes of particle nucleation. In emulsion polymerizations with a low emulsifier concentration, the number of radicals per particle and particle size increased with increasing conversion, and the increase was more pronounced at a low conversion. By contrast, in emulsion polymerizations with a high emulsifier concentration, the number of radicals per particle decreased with increasing conversion. This is discussed in terms of the mixed models of particle nucleation, the gel effect, and the pseudobulk kinetics. The formation of monodisperse latex particles was attributed to coagulative nucleation and droplet nucleation for the polymerizations with low and high emulsifier concentrations, respectively. The effects of the continuous release of the emulsifier from nonmicellar aggregates and monomer droplets, the close-packing structure of the droplet surface, and the hydrophobic nature of the emulsifier on the emulsion polymerization of St are discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4422–4431, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号