首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Synthesis and Characterization of Ca(HSO4)2 · 2 H2SO4 or H2[Ca(HSO4)4], respectively ?Ca(HSO4)2 · 2 H2SO4”? crystallizes from CaSO4 saturated hot H2SO4c below 310 K. With SOCl2 containing ether it is possible, to remove two moles H2SO4 and to prepare Ca(HSO4)2. ?Ca(HSO4)2 · 2 H2SO4”? shows two endothermal effects at Tp1 = 336 K and Tp2 = 477 K during the thermal analysis. Whereas Tp2 corresponds to the segregation of H2SO4 from Ca(HSO4)2, Tp1 is attributed to the loss of two moles H2SO4. These results are supported by x-ray heating measurements on single crystals. From oscillation and Weissenberg photographs with CuKα the unit cell was determined. In agreement with these parameters, the compound is to formulate as the complex acid H2[Ca(HSO4)4].  相似文献   

2.
On the Hydration and Dehydration Behaviour of Magnesium Hydrogensulfate Mg(HSO4)2 · H2O has been prepared by crystallization from diluted sulfuric acid. The thermal destruction leads to the formation of siccative Mg(HSO4)2. This process is reversible, i. e., Mg(HSO4)2 rehydrates during cooling under formation of Mg(HSO4)2. H2O. Due to further water reception Mg(HSO4)2 · H2O decomposes at a temperature of 50°C forming Kieserite (MgSO4 · H2), MgSO4 · 1,25H2O, sulfuric acid, and water. During gentle warming of this heterogenous phase mixture it reacts under reconstruction of Mg(HSO4)2 · H2O. The thermal measurements have been carried out in dynamic as well as in static gas atmosphere. The strong dependence of the decomposition temperatures from the partial pressure of the gaseous products could be demonstrated by in situ X-ray measurements.  相似文献   

3.
Synthesis and Crystal Structure of Metal(I) Hydrogen Sulfates – Ag(H3O)(HSO4)2, Ag2(HSO4)2(H2SO4), AgHSO4, and Hg2(HSO4)2 Hydrogen sulfates Ag(H3O)(HSO4)2, Ag2(HSO4)2 · (H2SO4), and AgHSO4 have been synthesized from Ag2SO4 and sulfuric acid. Hg2(HSO4)2 was obtained from metallic mercury and 96% sulfuric acid as starting materials. The compounds were characterized by X‐ray single crystal structure determination. Ag(H3O)(HSO4)2 belongs to the structure type of Na(H3O)(HSO4). The silver atom is coordinated by 6 + 2 oxygen atoms. In the structure, there are dimers and chains of hydrogen bonded HSO4 tetrahedra. Dimers and chains are connected by the H3O+ ion to form a three dimensional hydrogen network. Ag2(HSO4)2(H2SO4) crystallizes isotypic to Na2(HSO4)2(H2SO4). The coordination number of silver is 6 + 1. The structure of Ag2(HSO4)2(H2SO4) is characterized by hydrogen bonded trimers of HSO4 tetrahedra, which are further connected to chains. For the recently published structure of AgHSO4 the hydrogen bonding system was discussed. There are tetrameres and chains, connected by bifurcated hydrogen bonds. The structure of Hg2(HSO4)2 contains Hg22+ cations with Hg–Hg distance of 2.509 Å. Every mercury atom is coordinated by one oxygen atom at shorter distance (2.18 Å) and three ones at longer distances (2.57 to 3.08 Å). The HSO4 tetrahedra form zigzag chains by hydrogen bonds.  相似文献   

4.
The dehydration of Ca(H2PO4)2·H2O was examined with simultaneous DTA and TG. This dehydration permitted clearly the apparation of the following phases: Ca(H2PO4)2·0.5H2O, Ca(H2PO4)2, Ca3(HP2O7)2, Ca2HP3O10 et Ca(PO3)2. The reaction of Ca(H2PO4)2·H2O and CaSO4 was also examined with the same technics. It was found that the decomposition of CaSO4 takes place for relatively low temperature (between 600°C and 800°C).  相似文献   

5.
A New Potassium Hydrogensulfate, K(H3O)(HSO4)2 — Synthesis and Structure Single crystals of the new compound K(H3O)(SO4)2 are synthesized from the system potassium sulfate/sulfuric acid. The up to day not described compound crystallizes in the monoclinic space group P21/c with the unit cell parameters a = 7.203(1) b = 13.585(2) and c = 8.434(1) Å, β = 105.54(1)°, V = 795.1 Å3, Z = 4 and Dx = 2.107 g · cm?3. There are two crystallographically different tetrahedral SO3(OH) anions. The first kind S1 tetrahedra forms dimers, whereas the second kind S2 forms infinite chains bonded via hydrogen bridges. The S1 dimers are linked to the S2 chains via oxonium ions (hydrogen bonds). Potassium is coordinated by 8 oxygen atoms which belong to four different SO3(OH) tetrahedra. These potassium oxygen polyhedra are connected by common edges forming chains running parallel z.  相似文献   

6.
Phase equilibria of the Na,K,Mg,Ca||SO4,Cl–H2O system at 50°С in the polyhalite (K2SO4 · MgSO4 · 2CaSO4 · 2H2O) crystallization region were studied using the translation method. Polyhalite was found to be involved, as an equilibrium phase of the title system at 50°С, in 17 invariant points, 36 monovariant curves, and 24 divariant fields. A fragment of equilibrium phase diagram of the title system in the polyhalite crystallization region was constructed.  相似文献   

7.
Hydrogen Sulfates with Disordered Hydrogen Atoms – Synthesis and Structure of Li[H(HSO4)2](H2SO4)2 and Refinement of the Structure of α-NaHSO4 The structure of Li[H(HSO4)2](H2SO4)2 has been determined for the first time whereas the structure of α-NaHSO4 has been refined, so that direct determination of the hydrogen positions was possible. Both compounds crystallize triclinic in the space group P1 with the lattice constants a = 6.708(2), b = 6.995(1), c = 7.114(1) Å, α = 75.53(1), β = 84.09(2) and γ = 87.57(2)° (Z = 4) for α-NaHSO4 and a = 4.915(1), b = 7.313(1), c = 8.346(2) Å, α = 82.42(3), β = 86.10(3) and γ = 80.93(3)° (Z = 1) for Li[H(HSO4)2](H2SO4)2. In both compounds there are disordered hydrogen positions. In the structure of α-NaHSO4 there are two crystallographically different HSO4? tetrahedra and two different coordinated Na atoms. The system of hydrogen bonds can be described by chains in [0–11] direction. The disordering of the H atoms reduces the differences between the S? O and S? OH distances (1.45 and 1.50 Å) while in the ordered HSO4 unit “regular” bond lengths are observed (1.45 und 1,57 Å). In the structure of Li[H(HSO4)2](H2SO4)2 there are two crystallographically different SO4-tetrahedra. The first one belongs to the [H(HSO4)2]? unit while the second one represents H2SO4 molecules. The H atom which is located nearby the symmetry centre and connects two HSO4 units by a short O…?O distance of 2.44 Å. Li is located on a symmetry centre and is slightly distorted octahedrally coordinated by oxygen atoms of six different SO4 tetrahedra. The system of hydrogen bonds can be regarded as consisting of double layers parallel to the xy-plane.  相似文献   

8.
Depending on the reaction partner, the organic ditopic molecule isonicotinic acid (Hina) can act either as a Brønsted acid or base. With sulfuric acid, the pyridine ring is protonated to become a pyridinium cation. Crystallization from ethanol affords the title compound tris(4‐carboxypyridinium) hydrogensulfate sulfate monohydrate, 3C6H6NO2+·HSO4·SO42−·H2O or [(H2ina)3(HSO4)(SO4)(H2O)]. This solid contains 11 classical hydrogen bonds of very different flavour and nonclassical C—H…O contacts. All N—H and O—H donors find at least one acceptor within a suitable distance range, with one of the three pyridinium H atoms engaged in bifurcated N—H…O hydrogen bonds. The shortest hydrogen‐bonding O…O distance is subtended by hydrogensulfate and sulfate anions, viz. 2.4752 (19) Å, and represents one of the shortest hydrogen bonds ever reported between these residues.  相似文献   

9.
As one of the oldest species, horsetail grass (Equisetum ramosissimum Desf.) is known as a living fossil plant, dating back to the Mesozoic era. Horsetail grass is also considered one of the most important sources of bio-silica due to its ability to accumulate high amounts of silica in all parts of the plant; various minerals can also be isolated by heat treatment. Fresh and aged horsetail grass stored for 2 years under ambient conditions was investigated by synchrotron powder X-ray diffraction (PXRD). Clear crystallites were not observed in a fresh sample stored at room temperature; surprisingly, high amounts of gypsum (CaSO4·2H2O) and syngenite (K2Ca[SO4]2·H2O) were observed in the 2-day dried and 2-year aged samples, respectively. However, crystalline silica materials were not observed. In addition, in situ thermal treatment of up to 700°C was applied to investigate the crystals and phase transitions by focusing the X-ray beam onto a single stem. In situ synchrotron PXRD revealed that dehydration occurred in gypsum in the 2-day dried sample with an increase in temperature to hemihydrate (CaSO4·xH2O, 0.5 ≤ x ≤ 0.8) and anhydrite (CaSO4). On the other hand, syngenite was transformed to calciolangbeinite (K2Ca2[SO4]3) at high temperatures in 2-year aged horsetail grass.  相似文献   

10.
Synthesis, Structure, and Reactivity of the Alkaline Earth Hydrogen Sulfates of Mg, Ca, Sr, and Ba The pure compounds of Ba(HSO4)2, Sr(HSO4)2 and Mg(HSO4)2 were prepared and identified as real hydrogensulfates. In contact with moist air Mg(HSO4)2 forms the monohydrate Mg(HSO4)2 · H2O which can be dehydrated into Mg(HSO4)2 at about 120°C. The hydration of Mg(HSO4)2 proceeds crystallographically oriented. The unit cell parameters and the d-values of the new compounds were determined. Ba(HSO4)2 and Sr(HSO4)2 cristallize orthorhombic, Mg(HSO4)2 monoclinic and Mg(HSO4)2 · H2O triclinic. Sr(HSO4)2 is isotypic in regard to Ca(HSO4)2. The relationship between the crystal structures and the chemical properties of the earth alkaline sulfates are discussed.  相似文献   

11.
Calcium sulfate whiskers can be used as the reinforcing agents in many composites, such as polymers, ceramics, cements, and papers, etc. This paper investigated the feasibility of preparing calcium sulfate whiskers using desulfurization gypsum as the raw material. The desulfurization gypsum composed mainly of CaSO4·2H2O (93.45 wt%) and CaCO3 (1.76 wt%) were treated with dilute H2SO4 at room temperature to convert CaCO3 to CaSO4; the latter was then treated at 110?C150 °C to form CaSO4·0.5H2O whiskers. The removal of the CaCO3 impurity from the desulfurization gypsum favored the formation of CaSO4·0.5H2O whiskers with high aspect ratios.  相似文献   

12.
The thermal decomposition of tribochemically activated Al2(SO4)3·xH2O was studied by TG, DTA and EMF methods. For some of the intermediate solids, X-ray diffraction and IR-spectroscopy were applied to learn more about the reaction mechanism. Thermal and EMF studies confirmed that, even after mechanical activation of Al2(SO4)3·xH2O, Al2O(SO4)2 is formed as an intermediate. Isothermal kinetic experiments demonstrated that the thermochemical sulphurization of inactivated Al2(SO4)3·xH2O has an activation energy of 102.2 kJ·mol?1 in the temperature range 850–890 K. The activation energy for activated Al2(SO4)3·xH2O in the range 850–890 K is 55.0 kJ·mol?1. The time of thermal decomposition is almost halved when Al2(SO4)3·xH2O is activated mechanically. The results permit conclusions concerning the efficiency of the tribochemical activation of Al2(SO4)3·xH2O and the chemical and kinetic mechanisms of the desulphurization process.  相似文献   

13.
The method of deposition from solutions was used to synthesize [RhL 4Cl2]HSO4 · nH2SO4 · mH2O complex salts (L = Py, γ-picoline), n ≈ 0.5−0.6, m ≈ 5−6. According to the data of X-ray phase analysis, the crystal structure of these salts is formed by layers of cations separated by layers consisting of anions molecules of sulfuric acid and water connected through a system of hydrogen bonds. Calorimetric methods were used to study phase transitions and the range of thermal stability of salts. The method of 1H NMR spectroscopy discovered that protons within the {HSO4 · nH2SO4 · mH2O} subsystem featured enhanced conductivity. Conductivity studies showed that trans-[RhL 4Cl2]HSO4 · nH2SO4 · mH2O samples had high proton conductivity.  相似文献   

14.
Synthesis and Structure of New Sodium Hydrogen Sulfates Na(H3O)(HSO4)2, Na2(HSO4)2(H2SO4), and Na(HSO4)(H2SO4)2 Three acidic sodium sulfates have been synthesized from the system sodium sulfate/sulfuric acid and have been crystallographically characterized. Na(H3O)(HSO4)2 ( A ) crystallizes in the space group P21/c with the unit cell parameters a = 6.974(2), b = 13.086(2), c = 8.080(3) Å, α = 105.90(4)°, V = 709.1 Å3, Z = 4. Na2(HSO4)2(H2SO4) ( B ) is orthorhombic (space group Pna21) with the unit cell parameters a = 9.970(2), b = 6.951(1), c = 13.949(3) Å, V = 966.7 Å3 and Z = 4. Na(HSO4)(H2SO4)2 ( C ) crystallizes in the triclinic space group P1 with the unit cell parameters a = 5.084(1), b = 8.746(1), c = 11.765(3) Å, α = 68.86(2)°, β = 88.44(2)°, γ = 88.97(2)°, V = 487.8 Å3 and Z = 2. All three compounds contain SO4 tetrahedra as HSO4? anions and additionally in B and C in form of H2SO4 molecules. The ratio H:SO4 determines the connectivity degree in the hydrogen bond system. In A , there are zigzag chains and dimers additionally connected via oxonium ions. Complex chains consisting of cyclic trimers (two HSO4? and one H2SO4) are present in B . In structure C , several parallel chains are connected to columns due to the greater content of H2SO4. Sodium cations show a distorted octahedral coordination by oxygen in all three structures, the NaO6 octahedra being “isolated” (connected via SO4 tetrahedra only) in A . Pairs of octahedra with common edge form Na2O10 dimeric units in C . Such double octahedra are connected via common corners forming zigzag chains in B .  相似文献   

15.
Gaseous products evolved from (NH4)2SO4, NH4HSO4 and NH4NH2SO3 during successive heating and cooling cycles were flushed with inert gas into analyzer Dräger tubes hooked tightly to the terminal port of the DSC cell base. This simple procedure allowed the starting temperature of the decomposition to be determined and the amount of the individual gases in the mixture to be identified and even estimated. NH4NH2SO3 at 523 K in humid air produced HNH2SO3 initially and, on further cycling, (NH4)2SO4 and NH4HSO4 also appeared. The ΔHf values for NH4HSO4 were (kJ mole?1): in an airtight sample holder 12.67, in a dry argon atmosphere 11.93, and in a static air atmosphere 10.92. Endothermic peaks for (NH4)2SO4 and 498 and 411 K represented the incongruent melting point and the polymorphic transition of (NH4)2SO4·NH4HSO4. After the first heating in air to 530 K, (NH4)2SO4 and NH4HSO4 exhibited closely similar cyclic DSC curves. The endothermic peaks at about 393–420 K may be assigned to different combinations of (NH4)2SO4 and NH4HSO4.  相似文献   

16.
We present a thermogravimetric study of the thermolysis of trans-[Ru(NO)(NH3)4(H2O)](HSO4)SO4 in a helium atmosphere. The intermediate product of thermolysis (at 186°C) is treated with a 2 M H2SO4 solution to obtain the first example of a sulfate ammine complex of nitrosoruthenium [Ru(NO)(NH3)4(SO4)](HSO4)·H2O (I) with a ∼70% yield. The product of higher temperature thermolysis (220°C) is treated with acids (H2SO4 and HCl) to obtain a triammine complex [Ru(NO)(NH3)3Cl(SO4)]·2H2O (II). The structure of the compounds is found by single crystal XRD: Pna21 space group, a = 10.8005(2) ?, b = 14.9032(3) ?, c = 7.7603(1) ?) (I) and P21/n space group, a = 8.9397(1) ?, b = 8.3276(1) ?, c = 13.8993(2) ?; β = 97.358(1)° (II).  相似文献   

17.
Potassium Hydrogensulfate Dihydrogensulfate, K(HSO4)(H2SO4) – Synthesis and Crystal Structure Single crystals with the composition KH3(SO4)2 have been synthesized from the system Potassium sulfate/sulfuric acid. The hitherto crystallographically not investigated compound crystallizes in the monoclinic space group P21/c (14) with the unit cell parameters a = 7.654(3), b = 11.473(5) and c = 8.643(3) Å, β = 112.43(3)°, V = 701.6 Å3, Z = 4 and Dx = 2.22 g · cm?3. The structure contains two types of tetrahedra, SO3(OH) and SO2(OH)2. These tetrahedra form tetramers via hydrogen bonds consisting of both, two SO3(OH) and two SO2(OH)2 tetrahedra. The tetramers are linked to each other via hydrogen bonds. Potassium is coordinated by 9 oxygen atoms which belong to both kinds of tetrahedra. These potassium oxygen polyhedra are connected by common faces forming chains running parallel z.  相似文献   

18.
Sulphito Cobalt(III) Ammines. III. Hydrogensulphito Cobalt(III) Ammines Concentrated acids react with [CoSO3(NH3)5]+ salts hydrogen- sulphitopentaamminecobalt(III) complexes. [Co(HSO3)(NH3)5]Cl2, [Co(HSO3)(NH3)5]Br2 and [Co(HSO3)(NH3)5](HSO4)2·H2O have been isolated. These substances are yellow coloured in contrast to an earlier work which reported red colour. Furthermore, the hydrogensulphitoacidotetreaammine complexes [Co(HSO3)Cl(NH3)4]Cl, [Co(HSO3)Cl(NH3)4]ClO4·H2O, [Co(HSO3)Br(NH3)4]Br and [Co(HSO3) CN(NH3)4]Cl habe been prepared. [Co(HSO3)Br(NH3)4]Br is losing spontaneously HBr forming [CoSO3Br(NH3)4]. The neutral complex [Co(HSO3)SO3(NH3)4]·1/2H2O has been obtained from cis- NH4[Co(SO3)2(NH3)4] and HCl. The absorption spectra in the IR, visible and UV region are reported and discussed. The HSO3 group is coordinated to Co through the S atom. The Co? S bond is weaker than in the sulphito complexes as concluded from the RAMAN spectrum. In the new complexes, the hydrogensulphito ligand causes a minor trans effect than the sulphito ligand.  相似文献   

19.
In the title compounds, 3-(dihydroxyboryl)anilinium bisulfate monohydrate, C6H9BNO2+·HSO4·H2O ( I ), and 3-(dihydroxyboryl)anilinium methyl sulfate, C6H9BNO2+·CH3SO4 ( II ), the almost planar boronic acid molecules are linked by pairs of O—H…O hydrogen bonds, forming centrosymmetric motifs that can be described by the graph-set R22(8) motif. In both crystals, the B(OH)2 group acquires a synanti conformation (with respect to the H atoms). The presence of the hydrogen-bonding functional groups B(OH)2, NH3+, HSO4, CH3SO4 and H2O generates three-dimensional hydrogen-bonded networks, in which the bisulfate (HSO4) and methyl sulfate (CH3SO4) counter-ions act as the central building blocks within the crystal structures. Furthermore, in both structures, the packing is stabilized by weak boron–π interactions, as shown by noncovalent interactions (NCI) index calculations.  相似文献   

20.
Summary.  Calcium sulfate occurs in nature in form of three different minerals distinguished by the degree of hydration: gypsum (CaSO4·2H2O), hemihydrate (CaSO4·0.5H2O) and anhydrite (CaSO4). On the one hand the conversion of these phases into each other takes place in nature and on the other hand it represents the basis of gypsum-based building materials. The present paper reviews available phase diagram and crystallization kinetics information on the formation of calcium sulfate phases, including CaSO4-based double salts and solid solutions. Uncertainties in the solubility diagram CaSO4–H2O due to slow crystallization kinetics particularly of anhydrite cause uncertainties in the stable branch of crystallization. Despite several attempts to fix the transition temperatures of gypsum–anhydrite and gypsum–hemihydrate by especially designed experiments or thermodynamic data analysis, they still vary within a range from 42–60°C and 80–110°C. Electrolyte solutions decrease the transition temperatures in dependence on water activity. Dry or wet dehydration of gypsum yields hemihydrates (α-, β-) with different thermal and re-hydration behaviour, the reason of which is still unclear. However, crystal morphology has a strong influence. Gypsum forms solid solutions by incorporating the ions HPO4 2−, HAsO4 2−, SeO4 2−, CrO4 2−, as well as ion combinations Na+(H2PO4) and Ln3+(PO4)3−. The channel structure of calcium sulfate hemihydrate allows for more flexible ion substitutions. Its ion substituted phases and certain double salts of calcium sulfate seem to play an important role as intermediates in the conversion kinetics of gypsum into anhydrite or other anhydrous double salts in aqueous solutions. The same is true for the opposite process of anhydrite hydration to gypsum. Knowledge about stability ranges (temperature, composition) of double salts with alkaline and alkaline earth sulfates (esp. Na2SO4, K2SO4, MgSO4, SrSO4) under anhydrous and aqueous conditions is still very incomplete, despite some progress made for the systems Na2SO4–CaSO4 and K2SO4–CaSO4–H2O. Corresponding author. E-mail: daniela.freyer@chemie.tu-freiberg.de Received December 17, 2002; accepted January 10, 2003 Published online April 3, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号