首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-Temperature Synthesis of Oxyhalides, YOX (X = Cl, Br, I), as the Source of Impurity in the Preparation of Trihalides, YX3, via the Ammonium Halide Route. Analogy of YOCl and YSCl Ammonium halides, NH4X (X = Cl, Br, I), react with Y2O3 and Y2S3, respectively, at temperatures as low as 230=C (X = Cl), 280=C (Br), and 360=C (I) (molar ratio 12:1) to yield (NH4)3YX6, NH3, and H2O (H2S). The choice of smaller ratios than 12:1 (for example 2:1) results in the formation of oxyhalides, YOX, via the reaction of (NH4)3YX6 with surplus Y2O3. This reaction is therefore the actual source of impurity of rare-earth trihalides in their preparation via the ammonium halide routes.  相似文献   

2.
Single-Crystal X-Ray Analysis of Compounds with a Covalent Metal-Metal Bond. VII. Crystal and Molecular Structure of the Halogeno-Bridged Dimers of Halogenobis(pentacarbonylrhenium)indium(III), [(Re(CO)5)2In(μ-X)]2 (X = Cl, Br, I) [(Re(CO)5)2In(μ-X)]2 crystallizes if X = Cl and X = Br in the monoclinic system, space group P21/c (No. 14), with the lattice constants X = Cl: a = 10.540(6), b = 12.961(7), c = 26.071(12) Å, β = 106.3(1) Å, Z = 4, X = Br: a = 10.548(9), b = 13.108(7), c = 26.192(15) Å, β = 106.0(2)°, Z = 4 and if X = I in the triclinic system, space group P1 (No. 2), with the lattice constants a = 10.739(2), b = 7.160(1), c = 13.647(1) Å, α = 68.65(9), β = 71.89(9), γ = 65.52(9)°, Z = 1. The central molecular fragment consists of a plane In2X2 ring with the mean In—X distances: X = Cl: 2.624(6) Å, X = Br: 2.764(3) Å and X = I: 2.986(2) Å and the angles In—X—In/X—In—X, X = Cl: 97.2(2)°/ 82.8(2)°, X = Br: 94.8(1)°/85.2(1)° and X = I: 96.47(5)°/83.53(5)°. Two Re(CO)5 groups are bonded to each of these In atoms to form a distorted tetrahedral coordination. The mean In—Re bond-distances are: X = Cl: 2.797(2), X = Br: 2.796(2) and X = I:2.811 (2) Å. There is a octahedral coordination around the Re atoms.  相似文献   

3.
Ruthenium(III) Phthalocyanines: Synthesis and Properties of Di(halo)phthalocyaninato(1?)ruthenium(III) Di(halo)phthalocyaninato(1?)ruthenium(III), [Ru(X)2Pc?] (X = Cl, Br, I) is prepared by oxidation of [Ru(X)2Pc2?]? (Cl, Br, OH) with halogene in dichloromethane. The magnetic moment of [Ru(X)2Pc?] is 2,48 μB (X = Cl) resp. 2,56 μB (X = Br) in accordance with a systeme of two independent spins (low spin RuIII and Pc?: S = 1/2). The optical spectra of the red violet solution of [Ru(X)2Pc?] (Cl, Br) are typical for the Pc? ligand with the “B” at 13.5 kK, “Q1” at 19.3 kK and “Q2 region” at 31.9 kK. Sytematic spectral changes within the iron group are discussed. The presence of the Pc? ligand is confirmed by the vibrational spectra, too. Characteristic are the metal dependent bands in the m.i.r. spectra at 1 352 and 1 458 cm?1 and the strong Raman line at 1 600 cm?1. The antisymmetric Ru? X stretch (vas(Ru? X)) is observed at 189 cm?1 (X = I) resp. 234 cm?1 (X = Br). There are two interdependent bands at 295 and 327 cm?1 in the region expected for vas(Ru? Cl) attributed to strong interaction of vas(Ru? Cl) with an out-of-plane Pc? tilting mode of the same irreducible representation. Only the symmetric Ru? Br stretch at 183 cm?1 is selectively enhanced in the resonance-Raman(RR) spectra. The Raman line at 168 cm?1 of the diiodo complex is assigned to loosely bound iodine. The broad band at 978 cm?1 in the RR spectra of the dichloro complex is due to an intraconfigurational transition within the electronic ground state of low spin RuIII split by spin orbit coupling.  相似文献   

4.
Ruthenium(II) Phthalocyaninates(2–): Synthesis and Properties of (Acido)(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) (nBu4N)[Ru(OH)2Pc2?] is reduced in acetone with carbonmonoxid to blue-violet [Ru(H2O)(CO)Pc2?], which yields in tetrahydrofurane with excess (nBu4N)X acido(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) isolated as red-violet, diamagnetic (nBu4N) complex salt. The UV-Vis spectra are dominated by the typical π-π* transitions of the Pc2? ligand at approximately 15100 (B), 28300 (Q1) und 33500 cm?1 (Q2), only fairly dependent of the axial ligands. v(C? O) is observed at 1927 (X = I), 1930 (Cl, Br), 1936 (N3, NCO) 1948 cm?1 (NCS), v(C? N) at 2208 cm?1 (NCO), 2093 cm?1 (NCS) and v(N? N) at 2030 cm?1 only in the MIR spectrum. v(Ru? C) coincides in the FIR spectrum with a deformation vibration of the Pc ligand, but is detected in the resonance Raman(RR) spectrum at 516 (X = Cl), 512 (Br), 510 (N3), 504 (I), 499 (NCO), 498 cm?1 (NCS). v(Ru? X) is observed in the FIR spectrum at 257 (X = Cl), 191 (Br), 166 (I), 349 (N3), 336 (NCO) and 224 cm?1 (NCS). Only v(Ru? I) is RR-enhanced.  相似文献   

5.
Magnesium Phthalocyanines: Synthesis and Properties of Halophthalocyaninatomagnesate, [Mg(X)Pc2?]? (X = F, Cl, Br); Crystal Structure of Bis(triphenylphosphine)iminiumchloro-(phthalocyaninato)magnesate Acetone Solvate Magnesium phthalocyanine reacts with excess tetra(n-butyl)ammonium- or bis(triphenylphosphine)iminiumhalide ((nBu4N)X or (PNP)X; X = F, Cl, Br) yielding halophthalocyaninatomagnesate ([Mg(X)Pc2?]?; X = F, Cl, Br), which crystallizes in part as a scarcely soluble (nBu4N) or (PNP) complex-salt. Single-crystal X-ray diffraction analysis of b(PNP)[Mg(Cl)Pc2?] · CH3COCH3 reveals that the Mg atom has a tetragonal pyramidal coordination geometry with the Mg atom displaced out of the center (Ct) of the inner nitrogen atoms (Niso) of the nonplanar Pc ligand toward the Cl atom (d(Mg? Ct) = 0.572(3) Å; d(Mg? Cl) = 2.367(2) Å). The average Mg? Niso distance is 2.058 Å. Pairs of partially overlapping anions are present. The cation adopts a bent conformation (b(PNP)+: d(P1? N(K)) = 1.568(3) Å; d(P2? N(K)) = 1.587(3) Å; ?(P1? N(K)? P2) = 141.3(2)°). Electrochemical and spectroscopic properties are discussed.  相似文献   

6.
Osmium(II) Phthalocyanines: Preparation and Properties of Di(acido)phthalocyaninatoosmates(II) “H[Os(X)2Pc2?]” (X = Br, Cl) reacts in basic medium or in the melt with (nBu4N)X forming less stable, diamagnetic, darkgreen (nBu4N)2[Os(X)2Pc2?]. Similar dicyano and diimidazolido(Im) complexes are formed by the reaction of “H[Os(Cl)2Pc2?]” with excess ligand in the presence of [BH4]?. The cyclic voltammograms show up to three quasireversible redoxprocesses: E1/2(I) = 0.13 V (X = CN), ?0.03 V (Im), ?0.13 V (Br) resp. ?0.18 V (Cl) is metal directed (OsII/III), E1/2(II) = 0.69 V (Cl), 0.71 V (Br), 0.83 V (CN), 1.02 V (Im) is ligand directed (Pc2?/?) and E1/2(III) = 1.17 V (Cl) resp. 1.23 V (Br) is again metal directed (OsIII/IV). Between the typical “B” (~16.2 kK) and “Q” (~29.4 kK), “N regions” (~34.1 kK) up to seven strong “extra bands” of the phthalocyanine dianion (Pc2?) are observed in the uv-vis spectrum. Within the row CN > Im > Br > Cl, most of the bands are shifted slightly, the “extra bands” considerably more to lower energy in correlation with E1/2(I). The vibrational spectra are typical for the Pc2? ligand with D4h symmetry. M.i.r. bands at 514, 909, 1 173 and 1 331 cm?1 are specific for hexa-coordinated low spin OsII phthalocyanines. In the resonance Raman (r.r.) spectra polarized, depolarized or anomalously polarized deformation and stretching vibrations of the Pc2? ligand will be selectively enhanced, if the excitation frequency coincides with “extra bands”. With excitation at ~19.5 kK the intensity of the symmetrical Os? X stretching vibration at 295 cm?1 (X = Cl), 252 cm?1 (X = Im) and 181 cm?1 (X = Br) is r.r. enhanced, too. The asymmetrical Os? X stretching vibration is observed in the f.i.r. spectrum at 345 cm?1 (X = CN), 274 cm?1 (X = Cl), 261 cm?1 (X = Im) and 200 cm?1 (X = Br).  相似文献   

7.
In situ Generation of [PX] and Insertion into (tBuP)3, (X = Cl, Br). Synthesis of the Functionalized Cyclophosphanes (tBuP)3PX, [1-(tBu)(X)P-2,3,4-(tBu)3]P4 and Structure Analysis of (tBuP)3PCl The redox system PX3/SnX2 (X = Cl, Br) can be used as a source for the in situ generation of halogenphosphanediyl [PX]. In the presence of tri-t-butylcyclotriphosphane (tBuP)3 the intermediately formed [PX] is added to a ring P atom followed by an insertion reaction, which leads to a ring expansion, whereby monohalogenocyclotetraphosphanes (tBuP)3PX (X = Cl, Br; 1, 2 ) are formed. Excess [PX] does not lead to further ring expansion but through a complex reaction course to the functionalized cyclotetraphosphanes [1-(tBu)(X)P-2,3,4-(tBu)3]P4, 3 (X = Br); 7 (X = Cl). 1, 2 and 3 could be obtained in a pure form and NMR and mass spectroscopically, 7 31P-NMR spectroscopically, characterized. For 1 and 7 31P? 35,37Cl-isotopic shifts could be identified. 1 was further characterized by an X-ray structure analysis.  相似文献   

8.
Synthesis and Spectroscopical Characterization of Di(halo)phthalocyaninato(1–)rhodium(III), [RhX2Pc1?] (X = Cl, Br, I) Bronze-coloured di(halo)phthalocyaninato(1–)-rhodium(III), [RhX2Pc1?] (X = Cl, Br) and [RhI2Pc1?] · I2 is prepared by oxidation of (nBu4N)[RhX2Pc2?] with the corresponding halogene. Irrespective of the halo ligands, two irreversible electrode reactions due to the first ringreduction (ER = ?0,90 V) and ringoxidation (EO = 0,82 V) are present in the cyclovoltammogram of (nBu4N)[RhX2Pc2?]. The optical spectra show typical absorptions of the Pc1?-ligand at 14.0 kK and 19.1 kK. Characteristic vibrational bands are at 1 366/1 449 cm?1 (i. r.) and 569/1 132/1 180/1 600 cm?1 (resonance Raman (r. r.)). The antisym. (Rh? X)-stretching vibration is observed at 294 cm?1 (X = Cl), 240 cm?4 (Br) and 200 cm?1 (I). Only the sym. (Rh? I)-stretching vibration at 133 cm?1 is r. r. enhanced together with a strong line at 170 cm?1, which is assigned to the (I? I)-stretching vibration of the incorporated iodine molecule. Both modes show overtones and combinationbands.  相似文献   

9.
Copper(II) and cobalt(II) complexes with 4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methyl-2-phenylpyrimidine (L) of the general formula MLX2 (M = Cu(II), X = Cl and Br; M = Co(II), X = Cl, Br, and I) were obtained. According to X-ray diffraction data, CuLBr2 and CoLX2 (X = Cl, Br, and I) are mononuclear molecular complexes. The ligand L is coordinated to the metal atom in a chelating bidentate fashion through the N atoms of the pyrimidine and pyrazole rings. The coordination polyhedron of the metal atom is extended to a distorted tetrahedron by two halide ions. In solution, CuLBr2 undergoes slow transformation into CuL(1?x)L′ x Br2 and the binuclear (X-ray diffraction data) Cu(I) complex [CuL(1?x)L′ x Br]2 (L′ is 4-(4-bromo-3,5-dimethyl-1H-pyrazol-1-yl)-6-methyl-2-phenylpyrimidine). The complexes MLX2 show weak antiferromagnetic interactions between the M2+ ions.  相似文献   

10.
In order to know the relationship between structures and physicochemical properties of Group 12 metal(II) ions, the complexes with ‘simple’ ligands, such as alkyl cyclic diamine ligand and halide ions, were synthesized by the reaction of 1,4‐dimethylhomopiperazine (hp′) with MX2 as metal sources (M = Zn, Cd; X = Cl, Br, I). The five structural types, [ZnX2(hp′)] (X = Cl ( 1 ), Br ( 2 ) and I ( 3 )), [ZnX3(Hhp′)] (X = Cl ( 1′ ) and Br ( 2′ )), [CdCl2(hp′)]n ( 4 ), [{CdCl2(Hhp′)}2(µ‐Cl)2] ( 4′ ) and [{CdX(hp′)}2(µ‐X)2] (X = Br ( 5 ), I ( 6 )), were determined by X‐ray analysis. The sizes of both metal(II) and halide ions and the difference in each other's polarizability influence each structure. All complexes were characterized by IR, far‐IR, Raman and UV–Vis absorption spectroscopies. In the far‐IR and Raman spectra, the typical ν(M N) and ν(M X) peaks clearly depend on the five structural types around 540–410 cm−1 and 350–160 cm−1 respectively. The UV–Vis absorption band energy around 204–250 nm also reflects each structural type. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Ruthenium(II) Phthalocyanines: Preparation and Properties of Di(halo)phthalocyaninatoruthenate(II) [Ru(Py)2Pc2?] reacts with molten (nBu4N)X forming stable, green (nBu4N)2[Ru(X)2Pc2?] (X = Cl, Br). The cyclovoltammogram shows a quasireversible redoxprocess for the metal oxidation at E1/2(I) = ?0.02 V (X = Cl) resp. 0.05 V (X = Br) and for the first ringoxidation at E1/2(II) = 0.70 V. The typical π-π*-transitions (B < Q < N) of the phthalocyanine dianion (Pc2?) are observed in the uv-vis spectrum. With respect to RuIII phthalocyanines B is shifted significantly to higher, Q, N to lower energy. The strong extra-band at 24.2 kK is diagnostic for these RuII phthalocyanines. The vibrational spectra are typical for the Pc2? ligand with D4h symmetry, too, and bands at 513, 909, 1 171 und 1 329 cm?1 in the m.i.r. spectrum are specific for hexa-coordinated low spin RuII. In the Raman spectrum with excitation at ~480 nm the intensity of the totally symmetrical Ru? X stretching vibration at 266 cm?1 (X = Cl) resp. 168 cm?1 (X = Br) together with a progression of up to three overtones is selectively resonance Raman enhanced. The asymmetrical Ru? X stretching vibration is observed in the f.i.r. spectrum at 272 cm?1 (X = Cl) resp. 215 cm?1 (X = Br).  相似文献   

12.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of trans-(PNP)[TcCl4(Py)2] and trans-(PNP)[TcBr4(Py)2] By reaction of (PNP)2[TcX6] with pyridine in the presence of [BH4]? (PNP)[TcX4(Py)2], X = Cl, Br, are formed. X-ray structure determinations on single crystals of these isotypic TcIII complexes (monoclinic, space group P21/n, Z = 2, for X = Cl: a = 13.676(4), b = 9.102(3), c = 17.144(2) Å, β = 91.159(1)°; for X = Br: a = 13.972(2), b = 9.146(3), c = 17.285(4) Å, β = 90.789(2)°) result in the averaged bond distances Tc? Cl: 2.386, Tc? Br: 2.519, Tc? N: 2.132(3) (X = Cl) and 2.143(4) Å (X = Br). The two pyridine rings are coplanar and vertical to the X? Tc? X-axes, forming angles of 42.28° (X = Cl) and 43.11° (X = Br). Using the molecular parameters of the X-ray structure determination and assuming D2h point symmetry, the IR and Raman spectra are assigned by normal coordinate analysis based on a modified valence force field. Good agreement between observed and calculated frequencies is obtained with the valence force constants fd(TcCl) = 1.45, fd(TcBr) = 1.035, fd(TcN) = 1.37 (X = Cl) and 1.45 mdyn/ Å (X = Br), respectively.  相似文献   

13.
Formerly unknown 1,1-dimethyl-1-(trialkoxysilylmethyl)- and 1,1-dimethyl-1-(silatranylmethyl)hydrazinium halides were prepared by reaction of 1,1-dimethylhydrazine with (halomethyl)trialkoxysilanes XCH2Si(OR)3 (X = Cl, I; R=Me, Et) and 1-(halomethyl)silatranes XCH2Si(OCH2CH2)3N (X = Cl, Br). 1,1-Dimethyl-1-(silatranylmethyl)hydrazinium chloride and iodide were also obtained by transetherification of corresponding 1,1-dimethyl-1-(trimethoxysilylmethyl)hydrazinium halides with tris(2-hydroxyethyl)amine.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 6, 2005, pp. 915–919.Original Russian Text Copyright © 2005 by Sorokin, Voronkov.  相似文献   

14.
Crystal Structures and Vibrational Spectra of Tetrahalogenoacetylacetonatoosmates(IV), [OsX4(acac)]?, X ? Cl, Br, I By reaction of the hexahalogenoosmates(IV) with acetylacetone the tetrahalogenoacetylacetonatoosmates(IV) [OsX4(acac)]? (X = Cl, Br, I) are formed, which have been purified by chromatography and precipitated from aqueous solution as tetraphenylphosphonium (Ph4P) or cesium salts. X-ray structure determinations on single crystals have been performed of (Ph4P)[OsCl4(acac)] ( 1 ) (triclinic, space group P1 , a = 9.9661(6), b = 11.208(2), c = 13.4943(7) Å, α = 101.130(9), β = 91.948(6), γ = 96.348(8)°, Z = 2), (Ph4P)[OsBr4(acac)] ( 2 ) (monoclinic, space group P21/n, a = 9.0251(8), b = 12.423(2), c = 27.834(2) Å, β = 94.259(7)°, Z = 4) and (Ph4P)[OsI4(acac)] ( 3 ) (monoclinic, space group P21/c, a = 18.294(3), b = 10.664(2), c = 18.333(3) Å, β = 117.68(2)°, Z = 4). Due to the increasing trans influence in the series O < Cl < Br < I the Os? O. distances of O.? Cl? X′ axes are lengthened and the OsO. stretching vibrations are shifted to lower frequencies. The Os? X′ bond lenghts are shorter as compared with symmetrically coordinated X? Os? X axes.  相似文献   

15.
Structures of New Bis(pentafluorophenyl)halogeno Mercurates [{Hg(C6F5)2}3(μ‐X)] (X = Cl, Br, I) From the reactions of [PNP]Cl or [PPh4]Y (Y = Br, I) with Hg(C6F5)2 crystals of the composition [Cat][{Hg(C6F5)2}3X] (Cat = PNP, X = Cl ( 1 ); Cat = PPh4, X = Br ( 2 ), I ( 3 )) are formed. 1 crystallizes in the triclinic space group P1¯, 2 and 3 crystallize isotypically in the monoclinic space group C2/c. In the crystals the halide anions are surrounded by three Hg(C6F5)2 molecules. The reaction of [PPh4]Br with Hg(C6F5)2 under slightly changed conditions gives the compound [PPh4]2[{Hg(C6F5)2}3(μ‐Br)][{Hg(C6F5)2}2(μ‐Br)] ( 4 ).  相似文献   

16.
Photoelectron Spectra and Molecular Properties. 132. Trifluoromethylsulfane and Derivatives F3CSX (X ? CF3, Cl, Br, I) The He(I) photoelectron spectra of trifluoromethylsulfane F3CSH and its derivatives F3CSX (X ? CF3, Cl, Br, I) are assigned by Koopmans' correlations, IE = ?ε, with MNDO eigenvalues, by radical cation state comparison and based on resolved vibrational fine structures, which can' be discussed by MNDO FORCE calculations. The spin/orbit splitting in F3CSI can be approximated by additional ITEREX-85 calculations. Gasphase thermolysis of the trifluoromethylhalogensulfanes F3CSX at 10?4 mbar yields decomposition temperatures, which decrease from X ? Cl to I, and as fragmentation products of presumably radical intermediates, in addition to the respective halogens X2 and F2C?S, also F3CX as well as S2 and CS2 (X ?Cl, Br) are PE spectroscopically detected.  相似文献   

17.
On Reactions of Subgroup. VI. Hexacarbonyls with Tin(II) and Germanium (II) Halides The neutral complexes M(CO)5SnX2 and M(CO)5GeCl2 (M = Cr, Mo, W; X = Cl, Br, J) have been prepared by a photochemical reaction between M(CO)6 and SnX2, or CsGeCl3 in THF. The reaction of these compounds with [N(CH3)4]X (X = Cl, Br, J) in THF was found to lead to a series of anions [M(CO)5SnX3]? or [M(CO)5GeCl3]? (M = Cr, Mo, W; X = Cl, Br, J), some of which have previously been prepared. The physical properties and IR-spectra of the above compounds are discussed.  相似文献   

18.
Crystal Structures and Phase Transformations of Cesium Trihalogenogermanates CsGeX3(X = Cl, Br, I) The compounds CsGeX3 (X ? Cl, Br, I) have been obtained by reactions of Ge(OH)2 with CsX in aquaeous HX solutions. The thermal behavior has been studied by X-ray diffraction. Raman spectroscopy, and DTA/DSC. The compounds are dimorph. The low temperature modifications L-CsGeX3 show a rhomboedric deformed perovskite type structure. The high temperature phases H-CsGeX3 form the cubic perovskite type structure. The reversible phase transitions are interpreted as a result of position changes of the Ge atoms in the H-forms (Order-Disorder transitions). The transition temperatures increase in the sequence CsGeCl3 (155°C), CsGeBr3 (238°C), CsGeI3 (277°C).  相似文献   

19.
Tris-1-adamantylcyclotriphosphine and Tetrakis-1-adamantylcyclotetraphosphine: Two Peradamantylated Examples from the Cyclopolyphosphine Series (RP)n Depending on the halogen substitution at the phosphorus atom, 1-adamantyldihalophosphines of the type 1-AdPX2 (X = Cl, Br) react with sodium to give tris-1-adamantylcyclotriphosphine 1 (X = Cl) or tetra-kis-1-adamantylcyclotetraphosphine 2 (X = Br). The latter is also formed in the reaction of approximately equimolar quantities of 1-adamantylphosphine and phosgene. The 31P-NMR-parameters are discussed and compared with those of the analogous tbutyl compounds.  相似文献   

20.
Preparation and Spectroscopic Characterization of the Fluorophosphonium Salts X2FPSCH3+MF6? (X = Br, Cl; M = As, Sb) and XF2PSCH3+SbF6? (X = Br, Cl, F) The preparation of the fluorophosphonium salts X2FPSCH3+MF6? (X = Br, Cl; M = As, Sb) and XF2PSCH3+SbF6? (X = Br, Cl, F) by methylation of the corresponding thiophosphorylhalides in the system CH3F/SO2/MF5 (M = As, Sb) is reported. The new salts are characterized by their vibrational and NMR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号