首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Complexes of CuII, NiII, CoII and FeIII with Schiff-bases derived by condensing o-aminophenol and ethanolamine with dibenzoylmethane, benzoylacetone, acetylacetone and thenoyltrifluoroacetone have been prepared and characterized by elemental analysis, electrical conductivity, magnetic moment, d.t.a. and t.g.a. measurements, i.r., u.v.–vis., e.s.r. and Mössbauer spectra. All the complexes are non-electrolytes. Those with 1:2 metal:ligand ratios have an octahedral or distorted octahedral environment. Square-planar, Td or D2d structures have been proposed for the 1:1 complexes. The Mössbauer spectrum of the FeIII complex confirms its high-spin octahedral stereochemistry.  相似文献   

2.
Structure Reactivity Correlations in Coordinatively Unsaturated Metal Chelate Complexes. VII. Effect of Axial Bases on the Spin Ground State and the Charge Transfer Spectra of Iron Complexes with a Colorless Porphyrine-like [N4]-Macrocycle In contrast to similar macrocycles without the carbonyl substituents R2, the iron(II) complexes 3 react with several bases to form stable adducts. With imidazole, dark red diamagnetic (S = 0) sesqui- and diadducts have been isolated. They are oxidized quickly by air to give dark green polymeric low-spin (S = 1/2) iron(III) derivatives with one imidazolate anion as a bridging axial ligand. With pyridine, ammonia, methanol etc. intense red monoadducts are formed which are intermediate-spin (S = 1) complexes. Preparation of 3a in the presence of water results in a very instable yellow product which appears to be a high-spin (S = 2) diadduct. All the iron(II) complexes are extremely sensitive to air. The spectra of the iron(III) derivatives exhibit a single CT band in the visible region. The energy of the sharp maximum is strongly influenced by axial ligands and can be used to characterize the coordination properties of several bases.  相似文献   

3.
Sterically hindering bidentate chelates, such as 2,9‐diphenyl‐1,10‐phenanthroline, form entwined complexes with copper(I) and other tetrahedrally coordinated transition‐metal centres. To prepare octahedral complexes containing two entwined tridentate ligands and thus apply a strategy similar to that used for making catenanes with tetrahedral metal centres, the use of the classical terpy ligand (terpy=2,2′:6′,2′′‐terpyridine) appears to be attractive. In fact, 6,6′′‐diphenyl‐2,2′:6′,2′′‐terpyridine (dp‐terpy) is not appropriate due to strong “pinching” of the organic backbone by coordination to the metal and thus stable entwined complexes with this ligand cannot be obtained. Herein, we report the synthesis and coordination properties of a new family of tridentate ligands, the main features of which are their endocyclic nature and non‐sterically hindering character. The coordinating fragment consists of two 8′‐phenylisoquinolin‐3′‐yl groups attached at the 2 and 6 positions of a pyridine nucleus. Octahedral complexes containing two such entangled ligands around an octahedral metal centre, such as FeII, RuII or CoIII, are highly stable, with no steric congestion around the metal. By using functionalised ligands bearing terminal olefins, double ring‐closing metathesis leads to [2]catenanes in good yield with FeII or CoIII as the templating metal centre. The X‐ray crystallography structures of the FeII precursor and the FeII catenane are also reported. These show that although significant pinching of the ligand is observed in both FeII complexes, the system is very open and no steric constraints can be detected.  相似文献   

4.
Photocatalytic Systems. LIX. Photochemical Investigations of Iron (III) Mixed Ligand Complexes with Oxalate and Aromatic α-Diimines The photolysis of iron(III) mixed ligand complexes with oxalate and aromatic α-diimine ligands 2,2-bipyridine and 1,10-phenanthroline in aqueous/methanolic solution results in [Fe(N,N)3]2+, with N,N = α-diimine and carbon dioxid as main products of the photoredox-decomposition. In dependence on the irradiation wave-length and the concentration of the complex solution quantum yields of the formation of FeII were determined and compared with ΦFeII values of K3[Fe(ox)3].  相似文献   

5.
We report on the synthesis and characterization of three iron(III) phosphasalen complexes, [FeIII(Psalen)(X)] differing in the nature of the counter-anion/exogenous ligand (X=Cl, NO3, OTf), as well as the neutral iron(II) analogue, [FeII(Psalen)] . Phosphasalen (Psalen) differs from salen by the presence of iminophosphorane (P=N) functions in place of the imines. All the complexes were characterized by single-crystal X-ray diffraction, UV/Vis, EPR, and cyclic voltammetry. The [FeII(Psalen)] complex was shown to remain tetracoordinated even in coordinating solvent but surprisingly exhibits a magnetic moment in line with a FeII high-spin ground state. For the FeIII complexes, the higher lability of triflate anion compared to nitrate was demonstrated. As they exhibit lower reduction potentials compared to their salen analogues, these complexes were tested for the coupling of 2-naphthol using O2 from air as oxidant. In order to shed light on this reaction, the interaction between 2-naphthol and the FeIII(Psalen) complexes was studied by cyclic voltammetry as well as UV/Vis spectroscopy.  相似文献   

6.
Structure Reactivity Correlations in Coordinatively Unsaturated Chelate Complexes. IV. Reaction of Dioxygen with Cobalt(II) Chelates of Tridentate Di-anionic Schiff Base Ligands The high-spin cobalt(II) chelates 3 form with pyridine isolable adducts which are also high-spin complexes. In the case 3 b a low-spin mono-adduct is indicated by ESR spectroscopy, which is changed time-dependently into a stable quadratic-pyramidal form. With 1, 10-phenanthroline 3 b forms a low-spin mono-adduct. The spectrophotometric titration of 3 d with pyridine indicates an equilibrium A + 2 Py ? APy22 = 0,36 M?2) where A represents probably the tetrameric form of 3 d . In pyridine, 3 a , 3 b , and 3 d react with O2 in an 1:1 ratio; 3 c binds O2 in the ratio 2:1. The formation of superoxo complexes is indicated by ESR spectroscopy for the complexes 3 a , 3 b , and 3 d . 3 b reacts with O2 in piperidine to give the free superoxide ion. In n-butylamine a species is formed which seems to be an ion pair with direct interactions between the free O2? ion and the coordinated amine nitrogen.  相似文献   

7.
Three new iron(II)‐benzilate complexes [(N4Py)FeII(benzilate)]ClO4 ( 1 ), [(N4PyMe2)FeII(benzilate)]ClO4 ( 2 ) and [(N4PyMe4)FeII(benzilate)]ClO4 ( 3 ) of neutral pentadentate nitrogen donor ligands have been isolated and characterized to study their dioxygen reactivity. Single‐crystal X‐ray structures reveal a mononuclear six‐coordinate iron(II) center in each case, where benzilate binds to the iron center in monodentate mode via one carboxylate oxygen. Introduction of methyl groups in the 6‐positions of the pyridine rings makes the N4PyMe2 and N4PyMe4 ligand fields weaker compared to that of the parent N4Py ligand. All the complexes ( 1 – 3 ) react with dioxygen to decarboxylate the coordinated benzilate to benzophenone quantitatively. The decarboxylation is faster for the complex of the more sterically hindered ligand and follows the order 3 > 2 > 1 . The complexes display oxygen atom transfer reactivity to thioanisole and also exhibit hydrogen atom transfer reactions with substrates containing weak C?H bonds. Based on interception studies with external substrates, labelling experiments and Hammett analysis, a nucleophilic iron(II)‐hydroperoxo species is proposed to form upon two‐electron reductive activation of dioxygen by each iron(II)‐benzilate complex. The nucleophilic oxidants are converted to the corresponding electrophilic iron(IV)‐oxo oxidant upon treatment with a protic acid. The high‐spin iron(II)‐benzilate complex with the weakest ligand field results in the formation of a more reactive iron‐oxygen oxidant.  相似文献   

8.
The solid-state thermal decomposition of the tetrabridged dinuclear MnII, FeII, CoII, NiII, and CuII pivalate complexes with apical α-substituted pyridine ligands containing different substituents (2,3-dimethylpyridine or quinoline) was studied by differential scanning calorimetry and thermogravimetry. The decomposition of the CoII complexes is accompanied by the aggregation to form the volatile octanuclear complex Co84-O)2n-OOCCMe3)12, where n = 2 or 3, whereas the thermolysis of the MnII, FeII, NiII, and CuII complexes is accompanied by the degradation of the starting compounds, the phase composition of the decomposition products being substantially dependent on the nature of metal and the apical organic ligand. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1650–1659, September, 2007.  相似文献   

9.
Metal Complexes of the Methylester of Benzoyldithioacetic Acid and the Ethylester of N-Benzoylamino-dithiocarbonic Acid: Preparation and Characterization, ESCA and EPR Investigations Neutral bis-complexes of the methylester of benzoyldithioacetic acid ( 1 ) with NiII, PdII, CuII, ZnII and PbII were prepared as well as the tris-complex with CoIII. They are compared with corresponding complexes of the aza-isosteric ester ligand N-benzoylamino-dithiocarbonic acid ethylester (NiII, PbII). It turns out from IR, ESCA and (CuII/ 1 )-EPR data that both ligands chelate via O and S of its deprotonated forms with the exception of the lead complex of 1 , which contains the ligand monodentate and O-bound.  相似文献   

10.
11.
Structure Reactivity Correlations in Coordinatively Unsaturated Chelate Complexes. VIII. New Iron(II) Complexes of Tridentate Di-anionic Schiff Base Ligands with [NO2]-Donor Set The synthesis of new iron(II) complexes of the type 3 is described. The complexes have been isolated as red or reddish brown adducts with the solvent (MeOH) and with additional bases (NH3, pyridine), respectively. The compounds are extremely sensitive to air. All of them are high spin complexes. In absence of oxygen, the adducts cannot be converted into the solvent-free complexes by thermal treatment without decomposition of the chelate ligand. In the presence of moist air, however, the solvent molecules are removed quickly at room temperature. The oxidation results in black products which seem to be hydroxo ( 3a , 3b ) or dinuclear μ-oxo ( 3c , 3d , 3f ) iron(III) derivatives. Their reduced magnetic moments (3,2 … 4,5 μb) point to antiferromagnetic interactions. The iron(II) complexes react with iodine to form black 1:1 derivatives which exhibit a slightly reduced paramagnetism.  相似文献   

12.
Complexes of FeII with monoxime and dioxime ligands have been isolated and characterised. Kinetic results and rate laws are reported for acid aquation and base hydrolysis of these complexes in H2O and in MeOH–H2O mixtures. Kinetics of acid catalysed aquation of FeII–monoxime complexes follow a rate law with kobs = k2[H+] + k3[H+]2, while kinetics of acid dissociation and base hydrolysis of the FeII–dioxime complex follow rate laws with kobs = k2[H+] and kobs = k2[OH]. Acid aquation and base hydrolysis mechanisms are proposed. The solubilities of FeII–monoxime and –dioxime complex salts are reported and transfer chemical potentials of their complex cations are calculated. Solvent effects on reactivity trends have been analysed into initial and transition state components. These are determined from transfer chemical potentials of reactant and kinetic data. Rate constant trends from these complexes are compared and discussed in terms of ligand structure and solvation properties. Our kinetic results give information relevant to the application of these ligands as analytical reagents for trace FeII in acidic and neutral media, in water and in aqueous alcohols.  相似文献   

13.
Peptide deformylase (PDF), a metalloamidase which catalyzes a deformylation step during eubacterial protein biosynthesis, shows a peculiar preference for FeII as its active site metal ion (in particular, as opposed to ZnII, which is far more common among this class of enzymes). In order to explore the origin of this preference, density functional theory (DFT) calculations have been carried out using a biomimetic heteroscorpionate N2Sthiolate ligand system (L) and the metal centers FeII, ZnII, and CoII. Comparison of computed ML(formate) complexes to crystal structures of PDF?Cformate complexes illustrates the viability of the biomimetic ligand for investigating the PDF chemistry. pKa calculations on [ML(H2O)]+ complexes show that the metal centers are effective Lewis acids in activating the water molecule to allow formation of a nucleophilic hydroxide ligand. Computed oxidation potentials predict the ML(OH) and ML(formate) complexes not to be unstable with respect to oxidation. However, while each of the metal centers was therefore seen to be suitable for PDF chemistry, examination of the entire deformylation reaction showed FeII to be uniquely suited to PDF. The deformylation reaction was thermodynamically and kinetically optimal with FeII as the metal center. This is attributed to the charge transfer that occurs from the thiolate ligand to the FeII center during the reaction and to the relative coordinative flexibility of FeII that allows for facile interconversion between tetra- and pentacoordination, leading to greater activation of the substrate carbonyl at the nucleophilic attack transition state.  相似文献   

14.
In contrast to the UV‐photoinduced ligand photoionization of the flavonoid complexes of FeIII, redox reactions initiated in ligand‐to‐metal charge‐transfer excited states were observed on irradiation of the quercetin ( 1 ) and rutin ( 2 ) complexes of CuII. Solutions of complexes with stoichiometries [CuIIL2] (L=quercetin, rutin) and [CuII2Ln] (n=1, L=quercetin; n=3, L=rutin) were flash‐irradiated at 351 nm. Transient spectra observed in these experiments showed the formation of radical ligands corresponding to the one‐electron oxidation of L and the reduction of CuII to CuI. The radical ligands remained coordinated to the CuI centers, and the substitution reactions replacing them by solvent occurred with lifetimes τ<350 ns. These are lifetimes shorter than the known lifetimes (τ>1 ms) of the quercetin and rutin radical's decay.  相似文献   

15.
2,6‐Bis(1,2,3‐triazol‐4‐yl)pyridine (btp) ligands with substitution patterns ranging from strongly electron‐donating to strongly electron‐accepting groups, readily prepared by means of Cu‐catalyzed 1,3‐dipolar cycloaddition (the “click” reaction), were investigated with regard to their complexation behavior, and the properties of the resulting transition‐metal compounds were compared. Metal–btp complexes of 1:1 stoichiometry, that is, [Ru(btp)Cl2(dmso)] and [Zn(btp)Br2], could be isolated and were crystallographically characterized: they display octahedral and trigonal‐bipyramidal coordination geometries, respectively, and exhibit high aggregation tendencies due to efficient π–π stacking leading to low solubilities. Metal–btp complexes of 1:2 stoichiometry, that is, [Fe(btp)2]2+ and [Ru(btp)2]2+, could also be synthesized and their metal centers show the expected octahedral coordination spheres. The iron compounds exhibit quite a complex magnetic behavior in the solid state including spin crossover near room temperature, and hysteresis and locking into high‐spin states on tempering at 400 K, depending on the substituents on the btp ligands. Cyclic voltammetry studies of [Ru(btp)2]2+ reveal strong modulation of the oxidation potentials by more than 0.6 V and a clear linear correlation to the Hammett constant (σpara) of the substituent at the pyridine core. Isothermal titration calorimetry was used to measure the thermodynamics of the FeII–btp complexation process and enabled accurate determination of the complexation enthalpies, which display a linear relationship with the σpara values for the terminal phenyl substituents. Detailed NMR spectroscopic studies finally revealed that in the case of FeII complexation, dynamics are rapid for all investigated btp derivatives in acetonitrile, while replacing FeII by RuII or changing the solvent to dichloromethane effectively slows down ligand exchange. The results nicely demonstrate the utility of substituent parameters, originally developed for linear free‐energy relationships to explain reactivity in organic reactions, in coordination chemistry, and to illustrate the potential to custom‐design btp ligands and complexes thereof with predictable properties. The fast equilibration of the [Fe(btp)2]2+ complexes together with their tunable stability and interesting magnetic properties should enable the design of dynamic metallosupramolecular materials with advantageous properties.  相似文献   

16.
Synthesis, Structures, NMR and EPR Investigations of Binuclear Bis(N,N,N‴,N‴‐tetraisobutyl‐N′,N″‐isophthaloylbis(selenoureato)) Complexes of NiII and CuII The synthesis of binuclear CuII and NiII complexes of the quadridentate ligand N,N,N‴,N‴‐tetraisobutyl‐N′,N″‐isophthaloylbis(selenourea) and their crystal structures are reported. The complexes crystallize monoclinic, P21/c (Z = 2). In the EPR spectra of the binuclear CuII complex exchange‐coupled CuII‐CuII pairs were observed. In addition the signals of a mononuclear CuII species are observed what will be explained with the assumption of an equilibrium between the binuclear CuII‐complex (CuII‐CuII pairs) and oligomeric complexes with “isolated” CuII ions. Detailed 13C and 77Se NMR investigations on the ligand and the NiII complex allow an exact assignment of all signals of the heteroatoms.  相似文献   

17.
Molecular Structures of Copper(II) and Iron(III) Chloro Complexes with di- and monoprotonated N-(pyrid-2-ylmethyl)ethylenediamine-N,N′,N′-triacetate (H2pedta?; Hpedta2?) The molecular structures of two complexes of di- and monoprotonated N-(pyrid-2-ylmethyl)ethylenediamine-N,N′,N′ -triacetate (pedta3?) with CuII and FeIII as central atoms have been determined by single crystal X-ray diffraction methods. Both complexes have a distorted octahedral coordination with H2pedta? and Hpedta2? as pentadentate ligands and a chloride ion occupying the sixth coordination site. The different oxidation states of the central atoms result in a completely different coordination behaviour of the carboxyl groups. In both complexes one of the ? CH2? COOH groups is uncoordinated. In the FeIII complex, the central atom is coordinated by the hydroxylic O atoms of the deprotonated carboxyl groups. Contrary to this in the CuII complex, the central atom is coordinated by the carbonylic O atoms. One of the coordinated carboxyl groups is protonated and the other is deprotonated. All protonated carboxyl groups in both complexes form intermolecular hydrogen bonds.  相似文献   

18.
The rate of reaction of NO 2 ion with various FeIII porphyrins in the presence of PPh3 is shown to depend on the redox potential of the FeIII center. There is a linear relationship between the ease of reduction of the FeIII to FeII and the kinetics for the formation of the FeII porphyrin nitrosyl adduct, with concomitant oxidation of PPh3 to PPh3O. Cyclic voltammograms show reversible one-electron reductions that can be ascribed to the FeIII/FeII couple ranging from E1/2 = −343 to −145 mV (versus Ag/AgCl). The order of increasing half-wave reduction potentials for the FeIII/FeII porphyrin redox centers studied is octaethylporphyrin > etioporphyrin I > deuteroporphyrin IX dimethyl ester > protoporphyrin IX dimethyl ester > α,β,γ,δ-tetraphenylporphyrin. This sequence of redox potentials complements the pseudo first-order kinetics ( to m s −1) for the oxidation of PPh3 and subsequent FeII porphyrin nitrosyl adduct formation. The rates of reaction of biomimetic FeIII porphyrins with NO 2 ion demonstrate how metal center redox properties are influenced by the surrounding ligand. In this paper we have elucidated a possible mechanistic control for the rate of this reaction.  相似文献   

19.
The control of the redox reactivity, magnetic and optical properties of the different redox states of complexes with redox-active ligands permits their rational use in catalysis and materials science. The redox-chemistry of octahedrally coordinated high-spin CoII complexes (three unpaired electrons) with one redox-active bisguanidine ligand and two acetylacetonato (acac) co-ligands is completely changed by replacing the acac by hexafluoro-acetylacetonato (hfacac) co-ligands. The first one-electron oxidation is metal-centered in the case of the complexes with acac co-ligands, giving diamagnetic CoIII complexes. By contrast, in the case of the less Lewis-basic hfacac co-ligands, the first one-electron oxidation becomes ligand-centered, leading to high-spin CoII complexes with a radical monocationic guanidine ligand unit (four unpaired electrons). Ferromagnetic coupling between the spins on the metal and the organic radical in solution is evidenced by temperature-dependent paramagnetic NMR studies, allowing to estimate the isotropic exchange coupling constant in solution. Second one-electron oxidation leads to high-spin CoII complexes with dicationic guanidine ligand units (three unpaired electrons) in the presence of hfacac co-ligands, but to low-spin CoIII complexes with radical monocationic, peralkylated guanidine ligand (one unpaired electron) in the presence of acac co-ligands. The analysis of the electronic structures is complemented by quantum-chemical calculations on the spin density distributions and relative energies of the possible redox isomers.  相似文献   

20.
Hexacoordinated non‐heme iron complexes [FeII(L1)2](ClO4)2 ( 1 ) and [FeII(L2)2](PF6)2 ( 2 ) have been synthesized using ligands L1 = (E)‐2‐chloro‐6‐(2‐(pyridin‐2ylmethylene) hydrazinyl)pyridine and L2 = (E)‐2‐chloro‐6‐(2‐(1‐(pyridin‐2‐yl)ethylidene)hydrazinyl) pyridine]. These complexes are highly active non‐heme iron catalysts to catalyze the C (sp3)?H bonds of alkanes. These iron complexes have been characterized using ESI?MS analysis and molecular structures were determined by X‐ray crystallography. ESI ? MS analysis also helped to understand the generation of intermediate species like FeIII?OOH and FeIV=O. DFT and TD?DFT calculations revealed that the oxidation reactions were performed through high‐valent iron center and a probable reaction mechanism was proposed. These complexes were also utilized for the degradation of orange II and methylene blue dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号