共查询到20条相似文献,搜索用时 15 毫秒
1.
Luisa Pasti Salvatore Roccasalvo Francesco Dondi Pierluigi Reschiglian 《Journal of Polymer Science.Polymer Physics》1995,33(8):1225-1234
In this paper the high-temperature thermal field flow fractionation method is exploited for the analysis of polyethylene (PE). The experimental apparatus set-up, obtained by simply modifying a commercial instrument, is presented. The numerical procedure for deriving retention calibration plot versus molecular weight is discussed with reference to the specific polymer-solvent pair, PE-o-dichlorobenzene (ODCB), here employed. Different methods for computing the physicochemical data set of the solvent, necessary for calibration, are compared. The selectivity of the checked PE-ODCB system proves comparable with respect to the values currently found in thermal field-flow fractionation (ThFFF) analysis. Differences are found between PE and polystyrene (PS) analysis in the same solvent. The conditions for high temperature ThFFF operation in PE analysis and their advantages are discussed with respect to the standard SEC technique for PE, PS, and PE-PS copolymer analysis. Molecular weight distributions obtained by ThFFF of two PE commercial samples agree with those obtained by SEC. © 1995 John Wiley & Sons, Inc. 相似文献
2.
Magnitude and direction of thermal diffusion of colloidal particles measured by thermal field-flow fractionation 总被引:4,自引:0,他引:4
In this paper we provide experimental evidence showing that various types of submicrometer-sized particles (latexes, inorganic, and metallic), suspended in either aqueous or nonaqueous carrier liquids to which a temperature gradient dT/dx is applied, experience a force in the direction opposite to that of dT/dx. This behavior is similar to that of small particles such as soot, aerosols, and small bubbles suspended in stagnant gases across which temperature gradients are applied, a phenomenon known as "thermophoresis in gases." We report the use of a thermal field-flow fractionation (ThFFF) apparatus in two different configurations to establish the direction of particle motion subject to a temperature gradient. The first approach employed the conventional horizontal ThFFF channel orientation. In this case, small electrical potentials were applied across the narrow channel thickness either to augment or to act in opposition to the applied thermal gradient, depending on whether the accumulation wall was maintained at a positive or negative potential relative to the depletion wall. Thus, by observing the changes in the retention behavior of surface-charged latices or silica particles with changes in potential difference across the channel thickness, we were able to ascertain the direction of migration of the particles in the thermal gradient. The second approach involved the use of a ThFFF column oriented vertically in an implementation of a technique known as thermogravitational FFF. In this approach, the convective flow along the channel length (due to density gradients associated with the temperature gradient) couples with the thermal diffusion effect across the channel thickness to result in a combined particle retention mechanism. A retarded upward migration rate is indicative of accumulation of particles at the cold wall, while enhanced upward migration would indicate a hot-wall accumulation. From the results of our investigations, we conclude that submicrometer-sized particles suspended in either aqueous or nonaqueous carrier liquids and subjected to a temperature gradient migrate from the hot wall toward the cold wall of a ThFFF channel. 相似文献
3.
Summary Thermal field-flow fractionation separates polymers with high selectivity according to their Soret coefficient,S
τ, hence, according to their molar mass, and therefore consitutes an efficeint physicochemical tool for the determination of
the Soret coefficient of a given polymer in the carrier liquid from its retention time. However, the polymer concentration
in the sample influences the retention time and, hence, the value ofS
τ derived from it. An experimental study of the influence of sample concentration on retention,S
τ, and peak shape was performed for the polystyrene-decalin system over a relatively large temperature domain and for various
molar masses.
It is found that the retention time and the value ofS
τ increase with increasing sample concentration, the more so as the cold wall temperature is lower. This appears to be in contradiction
with the general non-equilibrium thermodynamic expression derived for polymer-solvent systems with positive second virial
coefficients, such as the present system over the temperature range investigated. There seems to be a temperature for which
the dependence ofS
τ on sample concentration vanishes. This temperature is about 375 K for the polystyrene-decalin system. As the sample concentration
increases, the peak barycentre and the standard deviation increases. As the peaks are fronting, the skewness is negative and
becomes more negative as the sample concentration increases. The peak skewness appears to be a good indicator of the onset
of sample concentration effects. The threshold concentration, for which these effects begin to become significant, decreases
with increasing molar mass. 相似文献
4.
5.
Nonlinear gradient-driven diffusion was studied in concentrated polystyrene (PS)/ethylbenzene (EB) solutions using vapor sorptions with a finite driving force. The nonlinear sorptions were carried out on thin films (≅2.05, 3.50 μ thick) at conditions where non-Fickian, “viscoelastic” effects appear. These data were modeled with the nonlinear diffusion equation studied by Tang. Four dimensionless material parameters in the model were determined from a limited amount of linear-response, differential sorption data on PS/EB mixtures measured in the same range of experimental conditions as for the nonlinear sorptions. The nonlinear model successfully predicts the observed nonlinear response either above or below the glass transition (Tg). In order to simultaneously capture the nonlinear response both above and below Tg, the abrupt change in the concentration dependence of physical properties at Tg must be accounted for. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2103–2119, 1997 相似文献
6.
Two-dimensional thermal field-flow fractionation (2D-ThFFF) is a new instrumental technique devised for continuous fractionation of soluble macromolecules and particles. The sample mixture is introduced into a disc-shaped channel and the separated sample components are collected continuously from the channel outlets. The method is based on a two-dimensional fractionation mechanism with radial and tangential flow components in the channel. The effects of flow components and thermal gradient on the fractionation were studied in the separation of polystyrene samples of different molecular masses using cyclohexane or a binary solvent consisting of 25% ethylbenzene and 75% cyclohexane as carrier. The continuous separation of polystyrene samples was improved with increasing thermal gradient and with the use of slow radial and tangential flow rates. The technique can be applied to preparative continuous separation of macromolecules. 相似文献
7.
Martin E. Schimpf J. Calvin Giddings 《Journal of Polymer Science.Polymer Physics》1989,27(6):1317-1332
The thermal diffusion coefficient DT has been obtained for 17 polymer-solvent combinations, each of them spanning a range of polymer molecular weights, using thermal field-flow fractionation. The polymers examined include polystyrene, poly(alpha-methyl)styrene, polymethylmethacrylate, and polysioprene. The solvents include benzene, toluene, ethylbenzene, tetrahydrofuran, methylethylketone, ethylacetate, and cyclohexane. Although DT was confirmed as essentially independent of polymer molecular weight, it was found to vary substantially with the chemical composition of polymer and solvent. The results were used to evaluate several thermal diffusion theories; the agreement with theory was generally found to be unsatisfactory. Attempts were then made to correlate the measured thermal diffusion coefficients with various physicochemical parameters of the polymers and solvent. A good correlation was found in which DT increases with the thermal conductivity difference of the polymer and solvent and varies inversely with the activation energy of viscous flow of the solvent. 相似文献
8.
9.
Because of the temperature dependence of the carrier liquid density, the mass of carrier which is contained in a thermal field-flow fractionation channel depends on the cold wall temperature and on the temperature difference across the channel thickness. It is observed that the void time of the solvent peak decreases when increasing the average temperature in the channel. The void time is found to be directly proportional to the average carrier density in the channel. The determination of the void time from the knowledge of the channel geometrical volume and the measurement of the volumetric flow-rate leads to significant errors if the thermal expansion of the carrier between the temperature of the measurement and the average channel temperature is not taken into account. Recommendations are given for proper void time determinations in thermal FFF. 相似文献
10.
Copolymer characterization is accomplished with respect to measurement of thermal diffusion coefficient (DT) and molecular weight determination by thermal field-flow fractionation. The examined copolymers are the eight poly(ethylene-co-vinyl acetate)s [P(E-V)] having different compositions of vinyl acetate ranging from 25 to 70% and the molecular weight from 110,000 to 285,000, and three polyvinyl acetate standards as component homopolymer. The carrier solvents are tetrahydrofuran, toluene, and chlorobenzene which have different viscosities and thermal conductivities. Measured DT values vary from 1.36 × 10?8 to 5.97 × 10?8 cm2/(s . K) which are dependent on the composition of copolymers and types of carriers. These values increase linearly with the increase of weight percent of vinyl acetate. It is possible to estimate DT values of polyethylene from the extrapolated intercept in the plots of DT vs. vinyl acetate wt % of copolymer. Tetrahydrofuran is found to be the appropriate carrier solvent for the separation of P(E-V) copolymers since DT varies greatly with the increase of wt % in THF. Attempts are made to correlate the measured retention data with molecular sizes of copolymers for the construction of the molecular weight calibration curve. Good correlations (r2 ≥ 0.931) are found in which D/DT values of polymers vary inversely with the product of hydrodynamic volume by weight ratio of vinyl acetate. Based on this relationship, the unknown molecular weight of copolymer sample can be determined from component homopolymers for which standards are readily available. © 1995 John Wiley & Sons, Inc. 相似文献
11.
A study on the influence of the carrier composition in a ThFFF system on the retention and thermal diffusion of sub-micron polystyrene latex particles has been carried out. Various factors that may influence retention were studied. These include: the type of electrolyte and surfactant, their respective concentrations, and the addition of an organic modifier. Particle retention is highly sensitive to small changes in the carrier composition. It is demonstrated that under the conditions applied, secondary effects, such as particle-wall and particle-particle interactions, are negligible. Addition of surfactants is required to minimise particle-wall interactions. Generally, retention increases at higher electrolyte concentration. Furthermore, the addition of acetonitrile (ACN) to an aqueous carrier leads also to an increased retention. The type of surfactant as well as its concentration is of influence on the retention time. The three surfactants that were studied, i.e., sodium dodecyl sulfate, Brij 35 and cetyltrimethylammonium bromide, showed significant differences in particle retention behaviour. The observed differences in retention in the carriers can be attributed to actual changes in thermal diffusion. D(T) appears to be mainly determined by the interaction between the particle's surface and the carrier liquid, and is therefore highly sensitive to changes in the chemical composition of the particle surface and the carrier. Strong differences in size selectivity were found for different carrier compositions. This allows a relatively easy optimisation of the separation. On the other hand, it complicates the size and composition analysis of particles. 相似文献
12.
重力场流分离是最简单的场流分离(gravitational flow-field fractionation,GrFFF)技术,常用于分离粒径几微米到几十微米的颗粒及生物样品。利用自组装加工的重力场流分离仪器分离3种不同粒径(3、6、20μm)的聚苯乙烯(PS)颗粒。自制了一种混合表面活性剂,并与商品化的表面活性剂FL-70进行了比较。通过均匀设计优化流速、混合表面活性剂中聚乙二醇辛基苯基醚(Triton X-100)的质量分数、载液黏度、停流时间等分离条件,以分离度(Rs)和保留比(R)为评价指标,发现FL-70的分离效能略优于自制的混合表面活性剂,可实现3种PS颗粒的完全分离(Rs1为1.771,Rs2为2.074)。结果表明该系统具有良好的分离性能。 相似文献
13.
A theory-based approach is presented for the development of thermal field-flow fractionation (ThFFF) of polyacrylates. The use of ThFFF for polymer analysis has been limited by an incomplete understanding of the thermal diffusion which plays an important role in retention and separation. Hence, a tedious trial-and-error approach to method development has been the normal practice when analyzing new materials. In this work, thermal diffusion theories based on temperature dependent osmotic pressure gradient and polymer-solvent interaction parameters were used to estimate thermal diffusion coefficients (D(T)) and retention times (t(r)) for different polymer-solvent pairs. These calculations identified methyl ethyl ketone as a solvent that would cause significant retention of poly(n-butyl acrylate) (PBA) and poly(methyl acrylate) (PMA). Experiments confirmed retention of these two polymers that have not been previously analyzed by ThFFF. Theoretical and experimental D(T)s and t(r)s for PBA, PMA, and polystyrene in different solvents agreed to within 20% and demonstrate the feasibility of this theory-based approach. 相似文献
14.
Summary
Cis-trans-decahydronaphthalene (67.85% trans+ 32.15% cis, here briefly referred to ascis-trans-decalin) as a possible solvent for thermal field-flow fractionation is proposed. Different features such as solvent properties
with respect to low polarity polymers, availability of basic physicochemical data (viscosity and thermal conductivity in a
convenient temperature range), low toxicity and low cost are emphasized. Retention data over a wide range of cold wall temperatures
and thermal gradients were collected. Thev correction factor and λ retention data were determined for polystyrene samples over a relative molecular mass range of 11,300–3,950,000
g mol−1.
From these data, selectivity values were determined and compared to the commonly found values for polystyrene in different
solvent systems. The average value of −0.6 found here forcis-trans-decalin falls in the optimum selectivity solvent-domain.Cis-trans-decalin is thus fully proven as an optimum solvent for ThFFF. 相似文献
15.
Charles A. Ponyik David T. Wu S. Kim Ratanathanawongs Williams 《Analytical and bioanalytical chemistry》2013,405(28):9033-9040
Thermal field-flow fractionation (ThFFF) is used to separate a linear triblock copolymer of polystyrene, poly(tert-butyl acrylate), and poly(methyl methacrylate) by composition. Fractions were collected and subjected to off-line NMR analysis. The resultant mole fraction versus retention time plots for each of the three polymer components confirmed the success of the separation and yielded the composition distribution of the copolymer. The composition distribution was also obtained using a second approach that involved solving a series of equations comprised of polymer thermal diffusion coefficients and quasi-elastic light scattering, differential refractometry, and UV detector responses. Both sets of data showed similar trends of composition variations in each polymer component as a function of retention time. However, discrepancies were observed in the mole fraction values. The ability to compositionally separate and to determine composition distribution of copolymers is important as demonstrated by the presence of diblock impurities in the ThFFF with off-line NMR results. 相似文献
16.
17.
Ivo Kssler Helena Krauserov 《Journal of polymer science. Part A, Polymer chemistry》1966,4(6):1329-1335
The possibility of carrying out continuous fractionation of polymers by the thermodiffusion method was investigated. From the working space of a plate-type column, fractions of polymer were continuously withdrawn simultaneously with filling of the column with fresh solution from a storage vessel. After equilibrium had been established, the distributions of molecular weights of the fractions were determined by a modified Baker and Williams method. In the same apparatus, and at constant temperature and concentration, fractionation, which may be characterized by a limiting viscosity number, is dependent on the total rate of withdrawal and on the ratios of amounts of polymer withdrawn in various places on the column. 相似文献
18.
A comparison of the resolving power of themal field-flow fractionation (thermal FFF) and size-exclusion chromatography (SEC) has been made by the experimental operation of a high-resolution system from each category. For the experimental systems used, the measured resolution for thermal FFF was found to be higher than that for SEC for three different binary polymer mixtures. Only for a single low-molecular-weight mixture falling outside the optimal operating range of thermal FFF did SEC show better resolution. The experimental resolution values were broken down into selectivity and column efficiency parameters. While selectivity was easily obtained, column efficiency required a correction for polydispersity effects. With the polydispersity correction made on the basis of thermal FFF data, true resolution values were calculated to replace the apparent or experimental resolution levels. Overall, the corrected resolution values showed that thermal FFF had a significant advantage over SEC. Prospects for future advances in these two techniques are discussed. 相似文献
19.
J. Calvin Giddings Michel Martin Marcus N. Myers 《Journal of Polymer Science.Polymer Physics》1981,19(5):815-828
A thin-channel four-pass hairpin thermal field-flow fractionation (FFF) column is described, and the advantages of its unique dimensional characteristics are explained. The problem of isolating the performance of this and other separations columns from the ubiquitous polydispersity effects are discussed and treated theoretically. The discussion is extended to size exclusion chromatography, and it is shown that the 2 to 6 times lower selectivity of the latter compared to FFF leads to the requirement for 4 to 36 times more theoretical plates to encounter polydispersity effects and thereby obtain information on polymer molecular weight distribution. A fractogram of six narrow polystyrene samples obtained from the hairpin system is shown to imitate closely the fractograms obtained from two totally different thermal FFF columns, showing that polydispersity dominates and that molecular weight information is revealed for these samples with only a few hundred theoretical plates. Various experimental and theoretical attempts are made to isolate the polydispersity and column contributions to plate height, including cut-and-recycle experiments, the observation of plate height versus velocity curves, and the direct calculation of the contributing effects. The various methods are subject to moderate errors, but are in rough agreement. The plate height plots show that the polydispersity effect contributed 53% and 68% to the measured plate height for 51,000 and 160,000 molecular weight samples, respectively. The latter polymer is shown to emerge with ca. 1300 true column plates. It is suggested that much higher column efficiency will be observed in the future if higher retention levels can be experimentally realized. 相似文献