首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Colourless single crystals of the anhydrous mercurous chlorate were grown from a solution of mercuric oxide (HgO) in chloric acid (HClO3) in the presence of elemental mercury. The crystal structure (monoclinic, P21/n, Z = 4, a = 816.59(12), b = 641.02(5), c = 1290.3(2) pm, β = 97.506(12)°, R(all) = 0.0317) contains trans‐O2ClO‐Hg‐Hg‐OClO2 molecules with a Hg‐Hg distance of 251.03(4) pm, Hg‐O (bond) distances of 218 and 224 pm and Hg‐Hg‐O angles of 177 and 165°, respectively.  相似文献   

2.
Preparation and Crystal Structure of Mercury (II) Thiodiphosphate Hg2P2S7 Hg2P2S7 crystallizes monoclinic with a = 10.887(8); b = 5.827(3); c = 8.132(6) Å und β = 103.83(6)° in space group C2.The crystal structure was determined from four-circle diffractometer data by means of the heavy atom method and refined by least squares to R = 0.094 for 1119 intensities. The structure contains P2S7 group which are arranged in layer parallel to the (001) plane and connected by Hg atoms to form a three-dimensional network. The Hg atoms are surrounded by four S atoms in a deformed tetrahedral arrangement (means distance Hg? S: 2.591 Å). The P2S7 group are composed of two PS4 tetrahedra sharing one corner (mean distance P? S: 2.048 Å; ? P? S? P: 108.6°). According to the structural data Hg2P2S7 may be interpreted as mercury(II) thiodiphosphate. The bond distance and the structural relationships between Hg2P2S7 and Ag4P2S7 are discussed. Hg2P2S7 represents a new defect tetrahedral structural type.  相似文献   

3.
A short survey on the fascinating history of mercury fulminate is given. The crystal structure of Hg(CNO)2 has been determined using single crystal X‐ray diffraction. Mercury fulminate crystallizes in an orthorhombic cell, space group Cmce with a = 5.3549(2), b = 10.4585(5), c = 7.5579(4) Å and Z = 4. The distances and angles in the O‐N≡C‐Hg‐C≡N‐O molecule are Hg‐C 2.029(6) Å, C≡N 1.143(8) Å, N‐O 1.248(6) Å and C‐Hg‐C 180.0(1)°, Hg‐C≡N 169.1(5)°, C≡N‐O 179.7(6)°. Each mercury atom is surrounded by two oxygen atoms from neighbouring Hg(CNO)2 molecules with a nonbonding distance of Hg···O 2.833(4) Å. The Hg‐C bond lengths in the linear Hg(CNO)2 molecules are shorter than those in the tetrahedral complex [Hg(CNO)4]2?. This refers to a large contribution of the 6s orbital in the Hg‐C bonds of Hg(CNO)2. The results of the X‐ray powder investigation on Hg(CNO)2 are also reported.  相似文献   

4.
Colourless single crystals of the caffeine adduct of mercurous perchlorate dihydrate, [Hg2(Caf)2](ClO4)2(H2O)2, were grown from aqueous solutions of mercurous perchlorate and caffeine by isothermal evaporation at ambient temperature. The crystal structure (monoclinic, P21/n, Z = 4, a = 1628.0(2), b = 780.4(1), c = 2229.6(3) pm, β = 99.84(1)°, R1(all data) = 0.0894) contains [trans‐Caf‐Hg‐Hg‐Caf]2+ cations with a Hg‐Hg distance of 250.88(6) pm, Hg‐N (bond) distances of 214.4(6) and 215.1(6) pm and Hg‐Hg‐N angles of 176.9(2) and 165.1(2)°, respectively. These cations are attached via weak Hg‐O contacts to dimers which are further arranged to leave large channels into which one crystal water molecule is included. The second water molecule and the two perchlorate anions are weakly attracted to one Hg atom.  相似文献   

5.
Polysulfonyl Amines. XXXVII. Preparation of Mercury Dimesylamides. Crystal and Molecular Structures of Hg[N(SO2CH3)2]2, Hg[{N(SO2CH3)2}2(DMSO)2], and Hg[{N(SO2CH3)2}2(HMPA)] Hg[N(SO2CH3)2]2 ( 1 ) and Hg2[N(SO2CH3)2]2 ( 2 a ) are formed as colourless, sparingly soluble precipitates when solutions of Hg(NO3)2 or Hg2(NO3)2 in dilute nitric acid are added to an aqueous HN(SO2CH3)2 solution. By a similar reaction, Hg2[N(SO2C6H4 ? Cl? 4)2]2 is obtained. 1 forms isolable complexes of composition Hg[N(SO2CH3)2]2 · 2 L with L = dimethyl sulfoxide (complex 3 a ), acetonitrile, dimethyl formamide, pyridine or 1,10-phenanthroline and a (1/1) complex Hg[N(SO2CH3)2]2 · HMPA ( 4 ) with hexamethyl phosphoramide. Attempted complexation of 2 a with some of these ligands induced formation of Hg0 and the corresponding HgII complexes. Crystallographic data (at -95°C) are for 1: space group 141/a, a = 990.7(2), c = 2897.7(8) pm, V = 2.844 nm3, Z = 8, Dx = 2.545Mgm?3; for 4a: space group P1 , a = 767.8(2), b = 859.2(2), c = 925.2(2)pm α = 68.44(2), β = 86.68(2), γ = 76.24(2)°, V = 0.551nm3, Z = 1, Dx = 2.113 Mgm?3; for 4: space group P21/c, a = 1041.3(3), b = 1545.4(3), c = 1542.5(3) pm, β = 100.30(2)°, V = 2.474nm3, Z = 4, Dx = 1.944Mgm3. The three compounds form molecular crystals. The molecular structures contain a linear or approximately linear, covalent NHgN moiety; the Hg? N distances and N? Hg? N angles are 206.7(4) pm and 176.3(2)° for 1, 207.2(2) pm and 180.0° for 3a, 205.7(4)/206.7(4) pm and 170.5(1)° for 4. In the complexes 3a and 4, the 0-ligands are bonded to the Hg atoms perpendicularly to the N? Hg? N axes, leading in 3a to a square-planar trans-(N2O2) coordination with Hg? 0 261.2(2) pm and N? Hg? O 92.3(1)/87.7(1)°, in 4 to a slightly distorted T-shaped (N2O) geometry with Hg? 0 246.2(4)pm and N? Hg? 0 96.7(1)/92.0(1)°. In all three structures, the primary coordination is extended to a severely distorted (N2O4) hexacoordination by the appropriate number of secondary, inter- and/or intramolecular Hg…?0 inter-actions (0 atoms from sulfonyl groups, Hg…?O distances in the range 280—300pm). The intramolecular Hg…?O interactions give rise to nearly planar four-membered [HgNSO] rings. The molecule of 1 has a two-fold axis through the bisector of the N? Hg? N angle, the molecule of 3a an inversion center at the Hg atom. The molecule of 4 has no symmetry.  相似文献   

6.
Phosphorane Iminato Complexes of Sulfur. Syntheses and Crystal Structures of [O3SS(NPPh3)2] · CH3CN, [SO(NPPh3)2], and [SCl(NPMe3)2]Cl The title compounds have been prepared by the reaction of Me3SiNPPh3 with SO2 and SOCl2, respectively, and by the reaction of Me3SiNPMe3 with S2Cl2. They form colourless, moisture sensitive crystals, which were characterized by IR spectroscopy and by crystal structure determinations. [O3SS((NPPh3)2)] · CH3CN : Space group Pca21, Z = 4, structure solution with 4016 observed unique reflections, R = 0.050. Lattice dimensions at ?60°C: a = 1865.1, b = 1168.4, c = 1569.0 pm. The compound has a zwitterionic structure with a S? S bond length of 218.2 pm and bond lengths S? N of 161.2 and P? N of 160.1 pm. [SO(NPPh3)2] : Space group P21/c, Z = 4, structure solution with 2854 observed unique reflections, R = 0.113. Lattice dimensions at ?50°C: a = 1173.1, b = 1585.6, c = 1619.2 pm, b? = 98.13°. The compound forms monomeric molecules, in which the positions of S and N atoms are disordered in two positions. The bond lengths are S? N 166 pm and P? N 163 pm in average. [SCl(NPMe3)2]Cl : Space group P1 , Z = 2, structure solution with 2416 observed unique reflections, R = 0.038. Lattice dimensions at 20°C: a = 613.2, b = 1030.3, c = 1111.4 pm, α = 88.48°, b? = 88.01°, γ = 83.10°. The compound forms ions [SCl(NPMe3)2]+ and Cl?. In the cation the sulfur atom is ?-tetrahedrally coordinated with a long S? Cl distance of 246.9 pm and bond lengths S? N of 155.3 pm and P? N of 164.3 pm in average.  相似文献   

7.
Transition Metal Phosphido Complexes. VIII. X-Ray Diffraction Studies of Transition Metal Phosphorus Four- and Six-Membered Ring Complexes. Structures of [(CO)4MnPH2]2, [(CO)4MnPH2]3, and [cpNiPH2]3 [(CO)4MnPH2]2 1 crystallizes triclinic in the space group P1 with a = 680.4 pm, b = 706.4 pm, c = 919.1 pm, α 110.5°, β = 91.92°, γ 115.65°, and Z = 1 formula unit. The molecule exhibits a centrosymmetrical structure. The bond angles within the planar four-membered (Mn? P)2-ring are 76.1° at the Mn atoms and 103.9° at the P atoms, respectively. The average Mn? P bond distance is found to be 235.1 pm. [(CO)4MnPH2]3 2 crystallizes monoclinic in the space group P2/n with a = 905.2 pm, b = 974.8 pm, c = 1264.2 pm, β = 109.1°, and Z = 2 formula units. The framework of the six-membered (Mn? P)3-ring can be described as having a twist boat conformation. The average endocyclic bond angles are with 89.1° at the Mn atoms and 130.1° at the P atoms, respectively, largely widened compared to 1 . The average Mn? P bond distance, which is found to be 238.5 pm, is also slightly increased compared to 1 . [cpNiPH2]3 3 crystallizes rhombohedral in the space group R3. The cell constants (hexagonal setting) are a = b = 1686.1 pm, c = 561.1 pm and Z = 3 formula units. The six-membered (Ni? P)3-ring exhibits a chair conformation. The endocyclic bond angles are with 92.3° at the Ni atoms and 124.3° at the P atoms, respectively, comparable with those of the six-membered ring compound 2 . The Ni? P bond distance is found to be 215.2 pm. The eyclopentadienyl ligands are disordered and have been refined as rigid groups.  相似文献   

8.
Contributions to the Chemistry of Silicon-Sulfur Compounds. XXXV. The Dimeric Thallium(I)-tri-tert-butoxysilanethiolate Thallium(I)-tri-tert-butoxysilanethiolate is formed as a dimer by reaction of tri-tert-butoxysilanethiol with TlNO3. The compound crystallizes as colourless triclinic plates. F.I. mass spectra show only the mass of the dimeric species (m/e = 968), in the E.I. mass spectra, however, also the peak for the monomeric unit (m/e = 484) is observed. The molecule is of 1 /Ci symmetry. The central four-membered ring is plane, the bond distances and angles therein are d (Tl? S) = 289 pm and S/Tl/S = 91.5°. The Tl atoms are additionally coordinated by an oxygen atom of the tri-tert-butoxysilyl group (d(Tl? O) = 280 pm). The mean bond angle at the threebonded sulfur atom was found to be 90° (d(S? Si) = 207.8 pm). Related details of the structure are discussed (space group P1 ; a = 927.5 pm, b = 1395.1 pm, c = 882.1 pm; α = 108.43°, β = 116.77°, γ = 90.98°; Z = 2; R = 0.032; 2887 reflections hkl).  相似文献   

9.
Transition Metal Phosphido Complexes. XVI. Structures of two Open-Chain, PH2-Bridged Bimetallic Complexes cp(CO)2Fe(μ-PH2)MLn (MLn = Fe(CO)4, MnMecp(CO)2) cp(CO)2Fe(μ-PH2)Fe(CO)4 1 crystallizes monoclinic in the space group P21/c with a = 733.6 pm, b = 1089.8 pm, c = 1761.6 pm, β = 99.65°, and Z = 4 formula units. The bond distances of the bridging phosphorus atom to the two iron units Fe(1)(CO)4 and cp(CO)2Fe(2) differ with 229.0 pm (P? Fe(1)) and 226.5 pm (P? Fe(2)), respectively, only slightly. The angle Fe(1)? P? Fe(2) is with 124.8° surprisingly large for four-coordinate phosphorus. The coordination at Fe(1) is trigonal bipyramidal with axial phosphorus. The ligand sphere at Fe(2) corresponds to the so-called “piano stool” arrangement. cp(CO)2Fe(μ-PH2)MnMecp(CO)2 2 crystallizes monoclinic in the space group P21 with a = 750.1 pm, b = 2234.5 pm, c = 974.1 pm, β = 106.23°, and Z = 4 formula units. The P? Fe bond distance is found to be 230.0 pm, the P? Mn bond distance 224.3 pm. The angle Fe? P? Mn is with 126.8° even somewhat larger than the corresponding angle in 1 . Including the bridging PH2-group both transition metals of 2 achieve a kind of “piano stool” arrangement for their ligand sphere.  相似文献   

10.
Polysulfonylamines. CXXIV. Preparation of Organylmercury(II) Di(methanesulfonyl)amides and Crystal Structure of Ph–Hg–N(SO2Me)2 Four N,N‐disulfonylated organylmercury(II) amides R–Hg–N(SO2Me)2, where R is Me, iPr, Me3SiCH2 or Ph, were obtained on treating the appropriate chlorides RHgCl with AgN(SO2Me)2, and characterized by 1H and 13C NMR spectra. In the crystal structure of the phenyl compound (orthorhombic, space group Pbca, Z = 8, X‐ray diffraction at –95 °C), the molecule exhibits a covalent and significantly bent C–Hg–N grouping [bond angle 172.7(3)°; Hg–C 204.0(8), Hg–N 209.1(7) pm]. One sulfonyl oxygen atom forms a short intramolecular Hg…O contact [296.1(5) pm] and simultaneously catenates glide‐plane related molecules via a second Hg…O interaction 297.6(5) pm], thus conferring upon HgII the effective coordination number 4 and a geometrically irregular coordination polyhedron (bond angles from 173 to 54°).  相似文献   

11.
Synthesis and Structure of Lithium Tris(trimethylsilyl)silanide · 1,5 DME Lithium tris(trimethylsilyl)silanide · 1,5 DME 2a synthesized from tetrakis(trimethylsilyl)silane 1 [6] and methyllithium in 1,2-dimethoxyethane , crystallizes in the monoclinic space group P21/c with following dimensions of the unit cell determined at a temperature of measurement of ?120 ± 2°C: a = 1 072.9(3); b = 1 408.3(4); c = 1 775.1(5) pm; β = 107.74(2)°; 4 formula units (Z = 2). An X-ray structure determination (Rw = 0.040) shows the compound to be built up from two [lithium tris(trimethylsilyl)silanide] moieties which are connected via a bridging DME molecule. Two remaining sites of each four-coordinate lithium atom are occupied by a chelating DME ligand. The Li? Si distance of 263 pm is considerably longer than the sum of covalent radii; further characteristic mean bond lengths and angles are: Si? Si 234, Li? O 200, O? C 144, O?O (biß) 264 pm; Si? Si? Si 104°, Li? Si? Si 107° to 126°; O? Li? O (inside the chelate ring) 83°. Unfortunately, di(tert-butyl)bis(trimethylsilyl)silane 17 prepared from di(tert-butyl)dichlorsilane 15 , chlorotrimethylsilane and lithium, does not react with alkyllithium compounds to give the analogous silanide.  相似文献   

12.
Crystal Structures of Monofluorosulfites MSO2F (M = K, Rb) Single crystals of potassium and rubidium fluorosulfite were obtained for the first time by reacting the alkali metal fluorides with sulfur dioxide in acetonitrile at 75 °C. According to the results of X‐ray structure determinations they are isotypic (monoclinic, P21/m, Z = 2, KSO2F: a = 696.2(2), b = 566.3(2), c = 465.8(1) pm, β = 107.73(2)°, RbSO2F: a = 717.2(1), b = 586.7(1), c = 484.0(1) pm, β = 107.14(1)°) and structurally analogous to potassium chlorate. In contrast to potassium fluoroselenite in which the complex anions are polymerized to linear chains by unsymmetric fluorine bridges, the fluorosulfite anion is isolated. The S–F‐distance of 159.1(2) pm (KSO2F) corresponds to a S–F single bond, the S–O‐distance of 152.6(2) pm indicates a bond order of 1.5.  相似文献   

13.
Contributions to the Chemistry of Silicon Sulfur Compounds. XXXVIII. Hexa(tri-t-butoxy)disiloxane and Hexa(tri-t-butoxy)disilthiane Hexa(tri-t-butoxy)disiloxane 1 and Hexa(tri-t-butoxy)disilthiane 2 were prepared by reaction of R3SiONa with R3SiCl and R3SiSNa with R3SiCl (R = tri-t-butoxy), respectively. The mass spectra show characteristic series of fragments. A large 29Si n.m.r. chemical shift of about —103.55 ppm is observed with 1 , whereas the value of 2 is —75.99 ppm. The crystal structure analysis of 1 result first in a colinear molecule (Si? ;O? ;Si = 180°) with 1 symmetry and relative short mean bond lengths of about d(Si? ;O) = 155.6 pm, but with large and strong anisotropic ellipsoids. Their quantitative rigid body analyses yield decisive corrections, namely a bent molecule with an Si? ;O? ;Si angle of 144.0° and d?corr = 163.5 pm. Molecule 2 is also bent as expected (Si? ;S? ;Si = 110.5°, d?(Si? ;S) = 211.9 pm and after rigid body correction 108.0° and dcorr = 215.2 pm, respectively). The results of our investigations will be discussed corresponding to the energy differences of the varying configurations at the bridging atoms.  相似文献   

14.
The Crystal Structure of tBu2P? P?P(Br)tBu2 tBu2P? P?P(Br)tBu2 1 crystallizes in the monoclinic space group P21/c with a = 2 888.9(3), b = 972.16(10), c = 1 534.04(14) pm, β = 105.129(8)° and 8 formula units in the unit cell. The two independent P3-units in 1 form angles of 105.77° or 105.98°, resp. One P? P distance (220,4 pm) corresponds to a single bond, the other one (207.9 pm) to a double bond.  相似文献   

15.
Contributions to the Chemistry of Silicon Sulphur Compounds. XXXIII. Structure of Bis (triphenylsilyl)sulphide The condensation of triphenylsilanethiol yielded bis(triphenylsilyl)sulphide ( 1 ). The compound is remarkable resistent to hydrolysis. 1 crystallizes monoclinically [P21/n (No. 14): a = 1707.8 pm; b = 1454.6 pm; c = 1225.0 pm; β = 97.27°; Z = 4; 4470 h k l; R = 0.053]. The molecule is bent with a bond angle Si? S? Si = 112.0°. The mean bond distances Si? S and Si? C are 215.2 pm and 187.4 pm, respectively. Some structural details are discussed.  相似文献   

16.
Synthesis of Phenylnitrene Complexes with N-Trimethylsilylaniline. II. Characterization and Crystal Structure of the Rhenium(V) Complexes mer-[Re(NPh)Cl3(NH2Ph)(Ph3P)] and trans-[Re(NPh)(OMe)Cl2(Ph3P)2] Reaction of [ReOCl3(Ph3P)2] with N-trimethylsilylaniline yields mer-[Re(NPh)Cl3(Ph3P)2], which reacts under air with excess of N-trimethylsilylaniline to form [Re(NPh)Cl3 · (NH2Ph)(Ph3P)]. Crystallization from CH2Cl2/MeOH affords [Re(NPh)(OMe)Cl2(Ph3P)2] as an additional product. [Re(NPh)Cl3(NH2Ph)(Ph3P)] crystallizes in the monoclinic space group P21/n with a = 1 192.3(3); b = 1 918.9(3); c = 1 266.3(3) pm; β = 101.71(1)°; Z = 4. The rhenium atom has a distorted octahedral environment with the Cl atoms in meridional positions. The phenyl nitrene ligand is coordinated with an almost linear arrangement Re? N1? C40 = 166.8(6)° and with a bond distance Re?N = 170.5(6) pm. [Re(NPh)(OMe)Cl2(Ph3P)2] · 1/2CH2Cl2 crystallizes in the triclinic space group P1 : a = 1 103.1(4); b = 1 227.9(4); c = 1 711.3(5) pm; α = 70.48(3)°; β = 72.71(3)°; γ = 80.03(3)°; Z = 2. The rhenium atom exhibits a distorted octahedral coordination with the Cl atoms and the phosphine ligands in trans positions. As a consequence of the competition of the nitrene ligand and the trans-coordinated methoxy group the Re?;N bond length is slightly lengthened to 173.2(7) pm, while the Re? O bond length of 193.4(6) pm is short. The bond angles Re? N? C70 and Re? O? C80 are 173.3(7)° and 139.1(7)°, respectively.  相似文献   

17.
Colourless needles of mercurous dimethylglyoximato nitrate, Hg2(Dmg)2(NO3)2, grow from a diluted nitric acid solution of mercurous nitrate and dimethylglyoxime. The crystal structure (triclinic, P1¯, a = 728.50(13), b = 1066.8(2), c = 1167.9(2) pm, α = 93.78(2)°, β = 94.16(2)°, γ = 98.61(2)°, Rall = 0, 0726) contains the cations [Hg2(Dmg)2]2+ and “non‐coordinating” (NO3) anions. In the cation, two neutral dimethylglyoxime molecules coordinate bidentately with Hg—N distances in the narrow range of 236 to 239 pm to the mercurous ion, Hg22+, which exhibits a Hg—Hg bond distance of 252.23(8) pm).  相似文献   

18.
Molecular and Crystal Structure of Mercuric α‐Amino‐γ‐methyl‐mercapto‐butyrate, Hg(Met)2 The mercuric salt of deprotonated methionine, Hg(Met)2, was obtained as colourless needles from aqueous solutions of methionine and HgCl2 or HgO, respectively. The crystal structure (monoclinic, P21, Z = 2, a = 984, 2(2), 507, 96(6), c = 1574, 2(3) pm, β = 93, 05(2)°; Rall = 0, 055) exhibits formula‐like molecules with strong Hg—N coordination at a distance of 216 pm; one oxygen atom adds to a chelate like N—Hg—O coordination. Stacking of these molecules adds two oxygen atoms of different methionate anions to an effective 2+2+2 ?octahedral”? coordination around the mercuric ion. Thereby a layer structure parallel (001) is formed with the methyl‐mercapto function on top and bottom of these layers.  相似文献   

19.
Colourless single crystals of [Hg(OH)](NO3)(H2O) were obtained by slow evaporation of an aqueous solution of Hg(NO3)2 and Bi(NO3)3. The crystal structure (orthorhombic, Pbca, Z = 8, a = 943.2(2), b = 697.6(1), c = 1349.0(2) pm, R1(all) = 0.0780) contains [Hg(OH)] = …OH–Hg–OH–Hg… zig zag chains (O–Hg–O angle: 168°, Hg–O–Hg angle: 112°, Hg–OH distance: 212 pm) to which one water molecule is attached loosely. The [Hg(OH)](H2O) chains are connected via bis‐monodentate‐bridging nitrate ions to corrugated layers that are stacked in the [001] direction. Hg2+ has an effective 2+2+2(+1) coordination.  相似文献   

20.
Contributions to the Chemistry of Silicon-Sulfur Compounds. XXX. Structure of Tetra-t-butoxy-1,3,2,4-dithiadisiletane Alcoholysis of silicon disulfide by t-butanol yielded the title compound. [(t-BuO)2SiS]2 crystallizes orthorhombically in the space group Pbca (no. 61) with a = 1708.4(5), b = 1560.8(3), c = 907.1(3) pm and Z = 4 molecules per unit cell. The molecule has the crystallographic 1 –Ci point symmetry and consequently the Si2S2 four-membered ring is rigid plane. The bond distances of this ring are Si? S = 214.2 and 213.1 pm and the bond angles S? Si? S = 97.8° and Si? S? Si = 82.2°. Related details of the structure are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号