首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 889 毫秒
1.
Two new compounds, LaInS2O and La5In3S9O3 were synthesized in the La–In–S–O quaternary system. Both compounds crystallize in the orthorhombic system with lattice constants a=20.5421(6) Å, b=14.8490(4) Å, c=3.9829(1) Å for LaInS2O, and a=4.1018(1) Å, b=26.833(1) Å, c=16.023(1) Å for La5In3S9O3. The structure of La5In3S9O3 was solved from single-crystal X-ray data, in the space group Pbcm, with Z=4; it is built from three-atom-thick (100)NaCl layers interleaved with fluorite-type ribbons, and is closely related to the structures of the known lanthanum and indium compounds La10In6S17O6 and La4In5S13. Both compounds LaInS2O and La5In3S9O3 exhibit a yellow color; measurement of their optical gaps gave 2.73 and 2.60 eV, respectively.  相似文献   

2.
Improved Syntheses, Crystal Growth, and Crystal Structure Determination of P4O6S2 and P4O6S3 Syntheses and single crystal growths of the title compounds are described. Both compounds crystallize in the space group P21/c (P4O6S2: a = 11.293(4); b = 6.457(3); c = 11.588(4) Å; β = 90.29(2)°, 2 450 diffractometer data, Rw = 0.035/P4O6S3: a = 15.611(5); b = 8,303(3); c = 9.697(4) Å; β = 127.12(2)°, 2 481 diffractometer data, Rw = 0.034). The structural data for the series P4O6Sn (n = 1 – 4) thus completed are compared to their oxide analogues P4O6On (n = 1 – 4). The changes in the geometry of the P4O6-cage in course of its successive oxidation are discussed.  相似文献   

3.
In contrast to former morphological studies, the results presented here show that calcium(II) thio­sulfate hexahydrate, CaS2O3·6H2O, crystallizes centrosymmetrically in the pinacoidal class (point group ). The structure is characterized by chains, parallel to [100], of alternating S2O3 and Ca(H2O)6O2 groups sharing common O atoms. The composition of each chain link is [Ca(H2O)6(S2O3)]. The geometry is analysed and compared in detail with the structural features of monoclinic strontium(II) thio­sulfate pentahydrate, SrS2O3·5H2O, which forms layers, parallel to (100), of alternating S2O3 and Sr(H2O)4O5 groups connected via common O atoms and O–O edges. Each layer contains [Sr(H2O)3O(S2O3)] as the unique repeat unit.  相似文献   

4.
The title compound, [La2(C8H3NO6)2(C8H4NO6)2(H2O)6]·2H2O, consists of dimeric units related by an inversion center. The two LaIII atoms are linked by two bridging bidentate carboxyl­ate groups and two monodentate carboxyl­ate groups. Each LaIII atom is nine‐coordinated by six O atoms from five different carboxyl­ate groups and three from water mol­ecules. Hydrogen bonds between the water mol­ecules and between the solvent water and a carboxyl­ate O atom are observed in the structure. In the crystal packing, there are slipped π–π stacking inter­actions between the parallel benzene rings. Both hydrogen‐bonding and π–π inter­actions combine to stabilize the three‐dimensional supra­molecular network.  相似文献   

5.
The new hexathiodiphosphate(IV) hydrates K4[P2S6] · 4 H2O ( 1 ), Rb4[P2S6] · 6 H2O ( 2 ), and Cs4[P2S6] · 6 H2O ( 3 ) were synthesized by soft chemistry reactions from aqueous solutions of Na4[P2S6] · 6 H2O and the corresponding heavy alkali‐metal hydroxides. Their crystal structures were determined by single crystal X‐ray diffraction. K4[P2S6] · 4 H2O ( 1 ) crystallizes in the monoclinic space group P 21/n with a = 803.7(1), b = 1129.2(1), c = 896.6(1) pm, β = 94.09(1)°, Z = 2. Rb4[P2S6] · 6 H2O ( 2 ) crystallizes in the monoclinic space group P 21/c with a = 909.4(2), b = 1276.6(2), c = 914.9(2) pm, β = 114.34(2)°, Z = 2. Cs4[P2S6] · 6 H2O ( 3 ) crystallizes in the triclinic space group with a = 742.9(2), b = 929.8(2), c = 936.8(2) pm, α = 95.65(2), β = 112.87(2), γ = 112.77(2)°, Z = 1. The structures are built up by discrete [P2S6]4? anions in staggered conformation, the corresponding alkali‐metal cations and water molecules. O ··· S and O ··· O hydrogen bonds between the [P2S6]4? anions and the water molecules consolidate the structures into a three‐dimensional network. The different water‐content compositions result by the corresponding alkali‐metal coordination polyhedra and by the prefered number of water molecules in their coordination sphere, respectively. The FT‐Raman and FT‐IR/FIR spectra of the title compounds have been recorded and interpreted, especially with respect to the [P2S6]4? group. The thermogravimetric analysis showed that K4[P2S6] · 4 H2O converted to K4[P2S6] as it was heated at 100 °C.  相似文献   

6.
Synthesis and X-Ray Structure Analysis of the 8π-Electron-Ring-System S4N4O2Sn2(CH3)6 and the Magnetic Properties of S4N4O2 and S8N8O4 S4N4O2 reacts with N[Sn(CH3)3]3 in a molar ratio of 1:1 to an eight-membered trimethyltin-substituted 8π-electron skeleton, S4N4O2Sn2(CH3)6. In contrast to known 6π-electronsystems this compound has tin atoms which are tetracoordinated. This was demonstrated on the basis of an x-ray analysis. S4N4O2Sn2(CH3)6 · 1/2 C6H6 crystallizes in the space group P21/c with a = 1396.0(4), b = 1190.3(4), c = 1256.7(3) pm, and β = 103.46(2)°. It was shown that the ability of coordination at the tin atom depends on the electron density. The magnetic properties of S4N4O2 and S8N8O4 were investigated by the Faraday method. The high diamagnetism in these ring compounds is caused by the π-electrons.  相似文献   

7.
8.
The MnS-La2S3 phase diagram has been constructed where the incongruently melting compound Mn2La6S11 is formed. Complex sulfide Mn2La6S11 is characterized by monoclinic structure; its incongruent melting temperature is 1535 K. Eutectic coordinates are 31 mol % La2S3, 1490 K. The extent of the ??-La2S3 based solid solutions at 1570 K is 8 mol % MnS; at 770 K, ??-La2S3 dissolves 3 mol % MnS. The MnS-Gd2S3 system is a eutectic with limited solid solutions. Eutectic coordinates are 35.5 mol % Gd2S3, 1640 K. Solubility in ??-Gd2S3 is 28 mol % MnS at 1570 K, in ??-Gd2S3 is 13 mol % MnS at 1170 K, and in MnS is 1 mol % Gd2S3. Thermochemical equations have been composed for eutectic and eutectoid phase transformations. A MnS-Nd2S3 phase diagram has been predicted.  相似文献   

9.
Conditions for the synthesis of the water-soluble lead thiosulfate complex Na6[Pb(S2O3)4] · 6H2O were determined. The complex synthesized was characterized by UV and IR spectroscopy and X-ray phase and thermal analyses. Thermolysis schemes were proposed on the basis of the IR and mass spectra of the thermal decomposition products.  相似文献   

10.
Syntheses, Crystal Structure, and Properties of the Cage‐like, Hexaacidic P12S12N8(NH)6 · 14 H2O and its Salts Li6[P12S12N14] · 26 H2O, (NH4)6[P12S12N14] · 10 H2O, and K6[P12S12N14] · 8 H2O The cage‐like acid P12S12N8(NH)6 · 14 H2O was obtained by the reaction of KSCN with P4S10 via the formation of K6[P12S12N14] · 8 H2O and subsequent ion exchange reactions in aqueous solution. Starting from the acid the salts Li6[P12S12N14] · 26 H2O and (NH4)6[P12S12N14] · 10 H2O were synthesized. According to X‐ray single‐crystal structure analyses the compounds are built up by isosteric P–N cages [P12S12N[3]8N[2]6]6–. Each of them is made up of twelve P3N3 rings, which exclusively exhibit the boat conformation. The cages have the idealized symmetry 2/m3; P12S12N8(NH)6 · 14 H2O: P1, a = 1119.11(7), b = 1123.61(7), c = 1125.80(6) pm, α = 80.186(4), β = 60.391(4), γ = 60.605(4)°, Z = 1; Li6[P12S12N14] · 26 H2O: Fm3, a = 1797.4(1) pm, Z = 4; (NH4)6[P12S12N14] · 10 H2O: P63, a = 1153.2(1), c = 2035.6(2) pm, Z = 2; K6[P12S12N14] · 8 H2O: R3c, a = 1142.37(5), c = 6009.6(3) pm, Z = 6. In the crystal the cages of the acid are crosslinked via hydrate molecules by hydrogen bonds. The cations in the salts show a high‐mobility and are located between the cages.  相似文献   

11.
The crystal structure of Hg3AlF6O2H, trimercury(II) alu­minium hydrogen hexafluoride dioxide, can be derived from a slightly distorted cubic close‐packed (ccp) arrangement of the metal atoms, where three quarters of the positions are occupied by Hg atoms and one quarter by Al atoms. The F and O atoms are considerably dislocated from the tetrahedral voids of this arrangement, thus forming [HgO2F6] polyhedra, with two short Hg—O distances, two intermediate Hg—F distances and four longer Hg—F distances, and nearly ideal [AlF6] octahedra. The H atoms are presumably located close to the inversion centre. Their positions were derived from crystal chemical arguments, and they take part in the formation of O—H?O hydrogen bonds between two O atoms, with an O?O distance of 2.562 (9) Å.  相似文献   

12.
Reaction of Tin Chlorides with Polysulfides. Crystal Structures of (PPh4)2[SnCl2(S6)2], (PPh4)2[Sn4Cl4S5(S3)O], and (PPh4)2[SnCl6] · S8 · 2CH3CN . The reaction of PPh4[SnCl3] with Na2S4 in acetonitrile in the presence of small amounts of water yields (PPh4)2[Sn4Cl4S5(S3)O] and minor amounts of (PPh4)2[SnCl2(S6)2], PPh4Cl · 2S8 and (PPh4)2[SnCl6]. SnCl4 is partially reduced by (PPh4)2Sx, PPh4[SnCl3] and (PPh4)2[SnCl6] · S8 · 2CH3CN being produced. According to the X-ray crystal structure determination the [Sn4Cl4S5(S3)O]2?-ion consists of an O atom that is coordinated by four Sn atoms which in turn are liked with one another by five single S atoms and one S3 group. In the [SnCl2(S6)2]2?-ion the Sn atom is octahedrally coordinated by two Cl atoms in trans arrangement and by two chelating S6 groups. Octahedral [SnCl6]2? ions and S8 molecules in the crown conformation are present in (PPh4)4[SnCl6] · S8 · 2CH3CN.  相似文献   

13.
Dilanthanum triniobium di­sulfide octaoxide, La2Nb3S2O8, crystallizes in the orthorhombic space group Pnnm and is isostructural with the Ln2Ta3X2O8 (Ln = La, Ce, Pr and Nd, and X = S and Se) family of tantalum compounds. Nb4+ and Nb5+ ions co‐exist in the structure and occupy different crystallographic sites. While the Nb4+ ions are found in mixed oxy­gen and sulfur octahedra, the Nb5+ ions are found in oxy­gen‐only octahedra.  相似文献   

14.
Concentrated aqueous solutions of magnesium chloride and calcium nitrate, respectively, allow on addition of the potassium salt of tetrathiosquarate, K2C4S4 · H2O, the isolation of the earth alkaline salts MgC4S4 · 6 H2O ( 1 ) and CaC4S4 · 4 H2O ( 2 ) as orange and red crystals. The crystal structure determinations ( 1 : monoclinic, C2/c, a = 17.2280(7), b = 5.9185(2), c = 13.1480(4) Å, β = 104.730(3)°, Z = 4; 2 : monoclinic, P21/m, a = 7.8515(3), b = 12.7705(5), c = 10.6010(4) Å, β = 93.228(2)°, Z = 4) show the presence of C4S42? ions with almost undistorted D4h symmetry having average C–C and C–S bond lengths of 1.451Å and 1.659Å for 1 and 1.451Å and 1.655Å for 2 . The structure of 1 contains discrete, octahedral [Mg(H2O)6]2+ complexes. Several O–H····O and O–H····S bridges with H····O and H····S distances of less than 2.50Å connect cations and anions. The structure of 2 is built of concatenated, edge‐sharing Ca(H2O)6S2 polyhedra. The Ca2+ ions have the coordination number eight, C4S42? act as a chelating ligands towards Ca2+ with Ca–S distances of 3.14Å. The infrared and Raman spectra show bands typical for the molecular building units of the two compounds.  相似文献   

15.
The MgZrF6 · n H2O (n = 5, 2 and 0) compounds were studied by the methods of X‐ray diffraction and 19F, MAS 19F, and 1H NMR spectroscopy. At room temperature, the compound MgZrF6 · 5H2O has a monoclinic C‐centered unit cell and is composed of isolated chains of edge‐sharing ZrF8 dodecahedra reinforced with MgF2(H2O)4 octahedra and uncoordinated H2O molecules and characterized by a disordered system of hydrogen bonds. In the temperature range 259 to 255 K, a reversible monoclinic ? two‐domain triclinic phase transition is observed. The phase transition is accompanied with ordering of hydrogen atoms positions and the system of hydrogen bonds. The structure of MgZrF6 · 2H2O comprises a three‐dimensional framework consisting of chains of edge‐sharing ZrF8 dodecahedra linked to each other through MgF4(H2O)2 octahedra. The compound MgZrF6 belongs to the NaSbF6 type and is built from regular ZrF6 and MgF6 octahedra linked into a three‐dimensional framework through linear Zr–F–Mg bridges. The peaks in 19F MAS spectra were attributed to the fluorine structural positions. The motions of structural water molecules were studied by variable‐temperature 1H NMR spectroscopy.  相似文献   

16.
Crystal Structures of Pb4SeBr6, Pb5S2I6, and Pb7S2Br10. The crystal structures of Pb4SeBr6, Pb5S2I6 and Pb7S2Br10 have been determined from single crystal X-ray analyses. Unit cell data see “Inhaltsübersicht”. The compounds have common structural features with the pure halides of lead. In Pb4SeBr6 all Pb atoms have trigonal prismatic coordination by Br(Se), additional neighbours above the prism faces completing the coordination number to 7, 8 or 9. In Pb5S2I6 some of the Pb atoms are surrounded by 6 I + 1 S or 5 I + 3 S in the same extended trigonal prismatic arrangement, others are in the centers of PbI6 octahedra. Pb7S2Br10 is isostructural with Th7S12 with statistical occupancy of part of the metal and nonmetal positions.  相似文献   

17.
Rb3LnCl6 · 2 H2O (Ln = La? Nd): Preparation, Crystal Structure, and Thermal Behaviour The compounds Rb3LnCl6 · 2 H2O (Ln = La? Nd) were prepared from acetic acid as powders. The preparation from aqueous solutions does not yield the pure products because RbCl precipitates as first compound. The structure of Rb3LaCl6 · 2 H2O was determined by X-ray analysis of a single crystal obtained from aqueous solution. The compounds with Ln = La? Nd are isotypic. They crystallize hexagonally in the space group P63/m (Rb3LaCl6 · 2 H2O: a = 1 220.4(2) pm, c = 1 688.6(3) (pm) with Z = 6. Anionic trimeric units [Ln3Cl12(H2O)6]3? are stacked along the c-axis over the corners of the unit cell. In the stacking frequency the units are rotated by 60° with respect to each other around the c-axis. The coordination number (C. N.) of Ln3+ is 8, which is satisfied by four bridging and two terminal chloride ions and two water molecules. The coordination spheres of the three rubidium ions in the different atomic positions are composed differently, their C.N. are 9, 8(+1) and 6(+6). The thermal dehydration of the compounds occurs in one step. The hydrates decompose at ca. 100°C to form the anhydrous compounds Rb2LnCl5 und RbCl since the anhydrous chlorides Rb3LnCl6 are thermodynamically stable above ca. 400°C only.  相似文献   

18.
Anhydrous Lanthanum Acetate, La(CH3COO)3, and its Precursor, ·NH4)3[La(CH3COO)6] · 1/2 H2O: Synthesis, Structures, Thermal Behaviour Single crystals of (NH4)3[La(CH3COO)6] · ½ H2O are obtained by refluxing La2O3in (CH3COO)3 · 1.5 H2O with an excess of NH4CH3COO in methanol. The crystal structure (trigonal, R3 , Z = 6, a = 1 365.0(3) pm, c = 2 360(1) pm, R = 0.088, Rw = 0.061 exhibits the coordination number of nine for La3+, which is surrounded by three chelating-type bidentate and three unidentate acetate groups. Characteristic are monomeric units of [La(CH3COO)6]3? which are connected to a three-dimensional network by hydrogen bonds with the NH ions. Thermal decomposition consists of four steps with La(CH3COO)3, La2(CO3)3 and La2O2CO3 as intermediates and La2O3 as the final Product. Single crystals of La(CH3COO)3 are obtained from La2O3 in a melt of NH4CH3COO (molar ratio 1:12) in a sealed glass ampoule. The crystal structure (trigonal, R3 , Z = 18, a = 2 203.0(5) pm; c = 987.1(3) pm, R = 0.027, Rw = 0.023) shows the coordination number of ten for La3+. These are three-dimensionally connected by oxygen atoms of the acetate groups with two tetradentate double-bridging and one Z,Z-type-bridging bidentate acetate group.  相似文献   

19.
Polynuclear Cobalt Complexes. IV. Preparation and Structure of [(papd)Co(O2)Co(papd)](S2O6)(NO3)2 · 4 H2O The binuclear peroxo complex [(papd)Co(O2)Co(papd)](S2O6)(NO3)2 · 4 H2O I crystallizes in the triclinic space group P1 . Lattice constants are a = 9.405(4), b = 9.270(4), c = 12.218(6)Å, α = 89.58(5), β = 99.08(6), γ = 114.79(5)° for Z = 1. The binuclear cation has a center of symmetry, so the Co? O? O? Co unit is planar. Three chelate rings have a common plane, the ligand configuration is δ.  相似文献   

20.
On the Crystal Structure of CaLaAl3O7 and CaLaGa3?xAlxO7 (x = 0.66) Single crystals of (I): CaLaAl3O7 and (II): CaLaGa2.34Al0.66O7 were grown from molten oxide mixtures and investigated by single crystal X-ray technique. Both compounds crystallize with tetragonal symmetry, space group D? P4 21m, (I): a = 7.8075; c = 5.1564 Å, (II): a = 7.9130, c = 5.2360 Å, Z = 2 and are isostructural with the Melilites. The crystal structure is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号