首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduction of crystal violet (CV) by poly(sodium styrene-p,-sulfonate) containing dihydronicotinamide (NAH) groups (PNAH) was compared with that by poly(sodium 2-acrylamido-2-methylpropanesulfonate) containing NAH groups (PNAH-AMPS) in aqueous media. PNAH reduced CV far more effectively than PNAH-AMPS, suggesting the presence of both hydrophobic and electrostatic interaction between PNAH and CV. An obvious color change was observed on addition of CV to the polyelectrolyte solutions, which was largely affected by the kind of polymers and the experimental conditions such as ionic strength and medium composition. These results imply that the location of CV within the macromolecular domain is an important factor for the polyelectrolyte-induced metachromasy. Some correlations of the metachromatic behaviors of CV with the reduction were also discussed.  相似文献   

2.
Rheo-optical Fourier-transform infrared (FTIR) spectroscopy in combination with Atomic Force Microscopy (AFM) was used to clarify the correlation between the morphology and the mechanical properties of two groups of heterogeneous polymers: different styrene-block-butadiene-block-styrene triblock copolymers and a dynamic vulcanizate based on polypropylene/ethylene-octene-copolymer. In all the polymers investigated the soft phase always oriented more than the hard phase. The degree of orientation in different phases depended on the nature of the phases as well as on the stress distribution in correlation to the morphology and their alignment. The observations at the molecular level corresponded well with the results from morphological studies at the microscopic level, which, in fact, enables an extensive and complex understanding of the structure-properties correlation of these types of polymers.  相似文献   

3.
The use of ionic liquids as novel solvents for the synthesis of aromatic copoly(ester-amide)s, containing a 9,10-anthraquinone moiety in the main chain, from the polycondensation reaction of terephthaloyl chloride and various ratios of p-phenylenediamine and 1,4-dihydroxyanthraquinone is reported. 1,3-Dialkylimidazolium-based ionic liquids are suitable reaction media for the synthesis of copoly(ester-amide)s. These copolymers exhibit color characteristics and thermal stability. The presence of the amide groups in the backbone of these polymers enhances their thermal stabilities. Inherent viscosities of the polymers obtained in 1,3-dialkylimidazolium bromide range from 0.28 to 0.42 dL/g.  相似文献   

4.
Spectroscopic and potentiometric methods have been used to study the ionic properties of several N-substituted acrylamide copolymers that display unusual ion-binding character. The ionic groups and the amide groups (both on the same repeating unit and on adjacent acrylamide units) in the copolymers are found to chelate calcium ions. The stabilizing effect of this amide chelation is found to be dependent on copolymer composition. A model is proposed to explain the unusual binding behavior of the acrylamide polymers. This involves the formation of an intramonomer chelate or one with neighboring acrylamide units that prevent precipitation of the polymers.  相似文献   

5.
The conformational behaviour of styrene-p-chlorostyrene diblock copolymers in dilute solutions was studied and compared with that of the corresponding triblock copolymers. Eight styrene-p-chlorostyrene diblock copolymers, of almost equimolar composition but with different molecular weights, were prepared using an anionic polymerization technique. The intrinsic viscosities of the copolymers were measured in non-selective solvents, such as toluene and 2-butanone, and in a selective solvent, cumene. The osmotic second virial coefficients of the diblock copolymers were measured in toluene. The data were analysed on the basis of two parameter theories. The unperturbed dimensions for the diblock copolymers can be expressed as a composition average of those for the parent homopolymers and the long-range interaction parameters of the diblock copolymers in toluene, 2-butanone and cumene are smaller than those of the triblock copolymers of the same composition. It means that the diblock copolymer chains in these 3 solvents had a more compact conformation than the triblock copolymers of the same composition and molecular weight.  相似文献   

6.
Blocks copolymers styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) and styrene-b-(ethylene-co-propylene) (SEP, SEPSEP), with different styrene content and number of blocks in the chain, were functionalized with glycidyl methacrylate (GMA) by melt radical grafting. The influence of monomer concentration, radical initiator and copolymer structure on the grafting degree was examined. The grafted copolymers were characterised by DSC and capillary rheometry. Blends of PET with functionalized SEBS and SEPSEP showed a marked improvement of phase morphology and elongation at break when compared to blends with unfunctionalized copolymers.  相似文献   

7.
A novel initiator containing pyrene, a fluorescent moiety, was prepared by reacting 1-aminopyrene and 2-bromoisobutyl bromide. The structure elucidation of the new initiator was carried out using various spectroscopic tools, as well as through single crystal X-ray diffraction studies. Novel, fluorescent amphiphilic block copolymers with a pyrene end-group, poly(styrene-b-acrylic acid) [P(S-b-AA)], poly(methyl methacrylate-b-dimethylaminoethyl methacrylate) [P(MMA-b-DMAEMA)], poly(styrene-b-tert-butyl acrylate) [P(S-b?t-BA)], poly(styrene-b-dimethylaminoethyl methacrylate) [P(S-b-DMAEMA)] were successfully synthesized by the atom transfer radical polymerization (ATRP) method, using CuBr as the catalyst and N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA)/N,N,N′,N″,N″-hexamethyltriethylenetetramine (HMTETA) as the complexing agent. The polymers were characterized by GPC, 1H-NMR, IR and UV-Vis spectroscopies. It was observed that as the polymerization time increased, both the conversion and the molecular weight increased linearly with time. The fluorescence properties of the polymers prepared were recorded. The physical properties and especially the pH dependent swelling properties of the amphiphilic block copolymers have been investigated. The utility of the block copolymers in the formation of stable dispersion of cadmium sulphide nanoparticles was investigated as a model study.  相似文献   

8.
Aprotic ionic polymers containing trimethylsilylmethyl-substituted imidazolium structures are synthesized using free radical polymerization of monomers comprising a vinyl group either at the cation or at the anion. Bulk polymerization is used for the room temperature ionic liquid monomer 1-trimethylsilylmethyl-3-vinylimidazolium bis(trifluoromethylsulfonyl)imide. In contrast to this, solution polymerization is applied for 1-trimethylsilylmethyl-3-methylimidazolium p-styrene sulfonate because this monomer undergoes self-polymerization during melting at a higher temperature than selected for bulk polymerization. Glass transition temperature (T g) of the ionic polymers and intrinsic viscosity measurements indicate differences between these polymers, which are composed either of a polycation with a trimethylsilylmethyl substituent at each vinylimidazolium segment of the polymer chain and mobile bis(trifluoromethylsulfonyl)imide (NTf2) anions or a polyanion containing p-styrene sulfonate segments and mobile 1-trimethylsilylmethyl-3-methylimidazolium cations. The new aprotic ionic polymers containing trimethylsilylmethyl substituents may be interesting for application in adhesive, interlayer and membrane manufacturing.  相似文献   

9.
Summary: Random copolymers of poly(styrene-co-4-vinylpyridine) (S4VP) and poly (styrene-co-2-hydroxyethyl acrylate) (SHEA) of different compositions were prepared and characterized. An investigation of the effects of solvent and densities of the interacting species incorporated within these copolymers showed that novel and various hydrogen bonding interpolymer complexes of different structures were elaborated when these copolymers are mixed together. The specific interactions that occurred within the SHEA copolymers and the elaborated complexes were evidenced by FTIR qualitatively from the appearance of a new band at 1604 cm−1 and quantitatively using appropriate spectral curve fitting in the carbonyl and pyridine regions. The intermolecular hydrogen bonding interactions that occurred between the hydroxyl groups of the SHEA and the nitrogen atom of the pyridine groups in the S4VP are stronger than the self-associations within the SHEA. In the solid state, a DSC analysis showed that the variation of the glass transition temperatures of these materials with the composition behaved differently with the densities of interacting species and were analyzed quantitatively. A thermal stability study of the synthesized copolymers and of their different mixtures carried by thermogravimetry confirmed a similar behaviour.  相似文献   

10.
The miscibility of blends of copolymers of different compositions of butyl methacrylate-co-methacrylic acid or styrene-co-methacrylic acid with styrene-co-4-vinylpyridine or butyl methacrylate-co-4-vinylpyridine was studied by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. It was found that these blends were miscible in part as a result of specific favorable interactions between the carboxylic acid and pyridine groups within the polymer chains. Evidence of such interactions was obtained from the single composition-dependent glass transition temperature and the FTIR results.  相似文献   

11.
Dibenzyltrithiocarbonate‐mediated RAFT polymerization of dimethyl‐p‐vinylbenzylphosphonate and its copolymerization with styrene are studied in order to access well‐defined statistical and block copolymers containing controlled amounts of dimethylphosphonate groups. NMR and SEC analysis of the (co)polymers confirm the controlled character of the polymerizations. ABA triblock copolymers are treated with TMSiBr/MeOH in order to transform the dimethylphosphonate groups into phosphonic acids while keeping the midchain trithiocarbonate group and triblock nature unaffected. Alternatively, the combination of trithiocarbonate aminolysis with TMSiBr/MeOH treatment of the same triblock copolymers leads to phosphonic acid‐functional diblock copolymer counterparts. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2616‐2624  相似文献   

12.
Adsorbed poly(ethylene‐stat‐vinyl acetate) (PEVAc) on fumed silica was studied using temperature‐modulated differential scanning calorimetry (TMDSC) and FT‐IR spectroscopy. The properties of the copolymers were compared with poly(vinyl acetate) (PVAc) and low density polyethylene (LDPE) as references. TMDSC analysis of the copolymer‐silica samples in the glass transition region was complicated for the copolymers because of the ethylene crystallinity. Nevertheless, examination of the glass transition region for small adsorbed amounts of these copolymers indicated the presence of tightly‐ and loosely‐bound polymer segments, similar to other polymers which have an attraction to silica. Compared with bulk polymers with the same composition, the tightly‐bound polymers showed an increased glass transition temperature (Tg) and a loosely‐bound fraction with a lower Tg than bulk. FT‐IR spectra of the surface copolymers indicated that the fraction of bound carbonyls (p) increased as the fraction of vinyl acetate in the copolymers decreased, consistent with the notion that the carbonyls from vinyl acetate preferentially find their way to the silica surface. Spectra from samples with different adsorbed amounts of polymer were used to obtain the amount of bound polymer (Mb) and the ratio of molar absorption coefficients of bound carbonyls to free carbonyls (X). The copolymers had very large p values (up to 0.8) at small adsorbed amounts and dependent on the composition of the polymer. However, an analysis of the bound fractions, based on only the vinyl acetate groups, superimposed the data, suggesting that the ethylene units simply dilute the vinyl acetate groups in the surface polymer. The sample with the smallest fraction of vinyl acetate did not show this behavior and may be considered to be “carbonyl poor.” © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 727–736  相似文献   

13.
The general design for the synthesis of AB diblock, and A2B and AB2 star copolymers based on the statistical coupling of poly(styrene) (PSt) and poly (methyl methacrylate) (PMMA) macromolecules containing photoreactive benzophenone is presented. For this purpose, mono- and bifunctional initiators for Atom Transfer Radical Polymerization (ATRP) bearing benzophenone group were synthesized and characterized. End- and mid-chain benzophenone functional PSt and PMMA with low molecular weights were obtained by ATRP using these initiators in the presence of CuBr/N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) catalytic complex. Poly(styrene-block-methyl methacrylate) (PSt-b-PMMA) copolymers were prepared by photolysis of the solutions containing end functional PSt and PMMA in THF at λ = 350 nm for 60 min in the presence of a hydrogen donor such as N-methyldiethanolamine (NMDEA). The proposed mechanism assumes hydrogen abstraction of photoexcited benzophenone moiety by NMDEA. Ketyl radicals resulting from abstraction reaction undergo radical-radical coupling to form benzpinacol structure at the core. Formation of A2B and AB2 type star copolymers upon irradiation of solutions containing appropriate combinations of end- and mid-chain functional polymers was also demonstrated. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2938–2947, 2009  相似文献   

14.
Novel photosensitive polymers with pendant photosensitive group, such as cinnamic ester, and photosensitizer groups, such as N-carbamoyl-p-nitroaniline and N-carbamoly-4-nitro-1-naphthylamine, were synthesized from radical copolymerizations of (2-cinnamoyloxy)ethylmethacrylate with photosensitizer monomers, such as p-nitrophenylmethacrylamide and 4-nitro-1-na-phthylmethacrylamide, by using asobisisobutyronitrile (AIBN) in benzene and from the copolymerizations of (2-hydroxy)ethylmethacrylate or (2-hydroxy)ethylacrylate with photosensitizer monomers by using AIBN in DMF. This procedure was followed by condensation reactions of the copolymers with cinnamoyl chloride with pyridine as HCL acceptor in the same reaction flask. The photoreactivities of the polymers obtained were influenced by the concentration of photosensitive group and photosensitizer groups and their ratio in the polymer matrix. In addition, the photosensitivity of cinnamic ester groups attached to a soft polymer segment was higher than that of cinnamic ester group attached to a hard polymer segment when these polymers had the same pendant N-carbamoyl-p-nitroaniline group as photosensitizer. Furthermore, the spacer length between the polymer chain and photosensitizer group was important for increasing the photoreactivity of the photosensitive group in the polymers with pendant cinnamic ester and N-carbamoyl-p-nitroaniline groups.  相似文献   

15.
Water-soluble comb-shaped polymers were prepared through grafting of poly(ethylene glycol) monomethyl ethers (MPEG) onto acrylic and methacrylic ester copolymers by transesterification reactions. The grafting was alkali-catalyzed, and performed in refluxing toluene solution or in melt at 155°C. The grafting efficiency was found to be on the order of 1 graft/10 monomer units. Epoxy groups in glycidyl methacrylate copolymers were also utilized for grafting. The crude graft copolymers were purified through chromatography and characterized by NMR and IR spectroscopy. Polymers prepared from MPEG 2000 were crystalline with melting points 10–15°C lower than the MPEG used. All polymers were shown to be surface active with CMC on the order of 1.5 g/L, and surface tensions of 38–45 dyn/cm. When used as emulsifiers the graft copolymers containing bulky lipophilic ester groups (2-ethylhexyl t-butyl) gave oil-in-water (o/w) and water-in-oil (w/o) emulsions from xylene/water with higher stability than those containing straight chain ester groups (methyl nbutyl n-docecyl). The most stable emulsions were obtained by dissolving the polymers in the organic phase.  相似文献   

16.
The peculiarities of ionic equilibrium in salt‐containing aqueous solutions of polyampholytes (acrylic acid–2‐methyl‐5‐vinylpyridine copolymers) of various compositions and molecular weights were studied. The protonation degree of base groups (βiep), the dissociation degree of acid groups (αiep), and the ionization constant of methylvinylpyridine groups (pKb) for the isoelectric points of the studied polyampholytes under various ionic strength values (I) were assessed spectrophotometrically. The dependencies of αiep and pKb versus the copolymer composition in the absence of low molecular weight electrolyte are described by the following equations: pKb = 6.2–0.037z and lg αiep = 0.27–0.0215z, where z is the molar content of the acrylic acid units. The basicity of methylvinylpyridine groups increases in proportion to the content of acid groups at a constant ionic strength and is independent of the molecular weight and molecular weight distribution of the copolymer. The relationship between pKb and the ionic strength of the solution for acrylic acid–methylvinylpyridine copolymers was established: pKb(I) = pK + B · I1/2, where pK is the thermodynamic ionization constant of base groups and B is 0.21 + 0.0065z. A good agreement between the experimental and theoretical (calculated from the given equation) values of the ionization constant, pKb, of methylvinylpyridine groups for other polyampholytes (copolymers of methacrylic acid with 2‐methyl‐5‐vinylpyridine) demonstrated that the ionic state of polyampholytes is determined by the basicity of methylvinylpyridine groups, which depends on the copolymer composition and solution ionic strength. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1824–1831, 2000  相似文献   

17.
Dilute solution properties of (styrene-p-chlorostyrene) triblock copolymers in various solvents were studied over a wide range of molecular weight and composition. Viscosity and osmotic pressure results indicate that the conformational behavior of the BmAnBm and AmBnAm copolymers (A = styrene; B = p-chlorostyrene; m and n denote the number of units) are similar in nonselective solvents such as toluene and 2-butanone, but different in selective solvents such as carbon tetrachloride and cumene. Short-range and long-range interaction parameters of the block copolymers were determined by applying the Stockmayer–Fixman method to viscosity data and also by application of the equation relating the osmotic virial coefficient and the excluded volume. The results show that the unperturbed dimensions of the block copolymers vary linearly with composition, and long-range interaction parameters in nonselective solvents can be expressed by those of the parent homopolymers, the chemical composition, and values of the interaction parameter βAB between styrene and p-chlorostyrene monomeric units.  相似文献   

18.
The hydrogenation of unsaturated polymers with diimide generated in-situ by thermolysis of p-toluenesulfonyl hydrazide (TSH) is a commonly used method for preparing laboratory scale quantities of saturated diene based polymers. The by-products from TSH, particularly p-toluenesulfinic acid, can attack at olefinic sites, adding p-tolylsulfone functionality and degrading polymer molecular weight. The addition of tri-n-propyl amine has been found to eliminate these side reactions in butadiene containing polymers and copolymers, enabling the preparation of polymers devoid of backbone unsaturation. No detectable sulfur-containing impurities were indicated by IR, NMR, or elemental analysis, and no chain degradation was observed via GPC analysis of the hydrogenated polymers. cis-Polybutadiene and butadiene containing random and block copolymers with styrene were hydrogenated cleanly using this technique. A ratio of 2 mol TSH and 2 mol amine/mol of olefin was necessary to assure > 99% hydrogenation, and a w/v ratio of 2 parts butadiene/100 parts o-xylene gave the most efficient hydrogenation. Polymers prepared from isoprene were only partially hydrogenated when treated with TSH in the presence of tri-n-propyl amine, and gave evidence of slight degradation of the polymer structure.  相似文献   

19.
Charge-transfer (CT) interaction of N-benzyl-1,4-dihydronicotinamide (BNAH) and poly(sodium styrene-p-sulfonate) containing 6 mol % of BNAH groups (PNAH) with several types of nicotinamide-containing polyelectrolytes in aqueous solution was investigated by fluorescence quenching. The experimental data were analyzed in terms of a kinetic model including both static and dynamic quenching. Hydrophobic association of BNAH with the polymers led to more effective quenching than the monomer [N-benzylnicotinamide (BNA)] system. Electrostatic attraction of PNAH and BNA also resulted in the remarkably large value of apparent quenching constant (K′ = 1.4 × 104M?1). Further, the fluorescence of PNAH was quenched far more effectively by poly[N-(p-vinylbenzyl)nicotinamide] (PBNA) and poly(acrylamide)s containing nicotinamide (NA) groups (PAm) due to the formation of a polyelectrolyte complex (PEC). In this case, the K′ value depended on the BNA content in the copolymer, suggesting the structural matching effect of the interacting pair on the intermacromolecular interaction.  相似文献   

20.
The solid-state viscoelastic properties of polystyrene containing randomly distributed groups of styrene-p-sodium sulfonate are studied and compared with the corresponding properties of copolymers of styrene and sodium methacrylate (S-NaMA). The viscoelastic behavior in the primary transition region of these two ionomers is very similar. As for the S-NaMA copolymers, it is proposed that sulfonated polystyrene is composed of ion-rich regions (clusters) immersed in a matrix of low ion concentration. Two peaks are observed in the plot of mechanical loss tangent versus temperature for the sulfonated material. The lower peak is assigned to the glass transition of the ion-poor matrix and the upper to the glass transition of the clustered regions. As for some other ionomers, the presence of ions is found to slow down the stress relaxation rate, giving a broad distribution of relaxation times. Above a certain ion concentration, the sulfonated polystyrenes are thermorheologically complex owing to the onset of a secondary relaxation mechanism associated with the ion-rich regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号