首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Synthesis and Crystal Structure of (PPh4)2[Mo2(S2)2Cl8] · 2 CH3CN and its Topotactic Transformation to (PPh4)2[Mo2(S2)2Cl8] MoS2Cl3 was prepared from molybdenum and S2Cl2 at 200 °C. Its reaction with PPh4Cl in acetonitrile yielded (PPh4)2[Mo2(S2)2Cl8] · 2 CH3CN. In vacuum or upon warming, it loses the acetronitrile without degradation of the crystals. According to the X-ray crystal structure determinations both compounds, with and without acetonitrile, are triclinic. They contain the same [Cl4Mo(μ-S2)2MoCl4]2– ions, in which the Mo atoms are joined by two disulfido groups and an Mo–Mo bond. Details of the crystal packings and their topotactic transformation are given.  相似文献   

9.
Crystal Structures of Octacyanomolybdates(IV). IV Dodecahedral [Mo(CN)8] Coordination of the Cyano‐Bridged Cobalt and Nickel Ammin Complexes MII2(NH3)8[Mo(CN)8] · 1.5 H2O (MII = Co, Ni) and Ni2(NH3)9[Mo(CN)8] · 2 H2O At single crystals of the hydrated cyano complexes Co2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 910.0(4), b = 1671(2), c = 1501(1) pm, β = 93.76(6)°) and Ni2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 899.9(9), b = 1654.7(4), c = 1488(1) pm, β = 94.01°), isostructurally crystallizing in space group P21/c, Z = 4, and of trigonal Ni2(NH3)9[Mo(CN)8] · 2 H2O (a = 955.1(1), c = 2326.7(7) pm, P31, Z = 3), X‐ray structure determinations were performed at 168 resp. 153 K. The [Mo(CN)8]4– groups of the three compounds, prepared at about 275 K and easily decomposing, show but slightly distorted dodecahedral coordination (mean distances Mo–C: 216.3, 215.4 and 216.1 pm). Within the monoclinic complexes the anions twodimensionally form cyano bridges to the ammin cations [M(NH3)4]2+ and are connected with the resulting [MN6] octahedra (Co–N: 215.1 pm, Ni–N: 209.8 pm) into strongly puckered layers. The trigonal complex exhibits a chain structure, as one [Ni(NH3)5]2+ cation is only bound as terminal octahedron (Ni–N: 212.0 pm). Details and the influence of hydrogen bridges are discussed.  相似文献   

10.
11.
12.
Octahedral coordination of molybdenum(III) is achieved by limiting the amount of cyanide available upon complex formation. Reaction of Mo(CF(3)SO(3))(3) with LiCN in DMF affords Li(3)[Mo(CN)(6)] x 6DMF (1), featuring the previously unknown octahedral complex [Mo(CN)(6)](3-). The complex exhibits a room-temperature moment of mu(eff) = 3.80 mu(B), and assignment of its absorption bands leads to the ligand field parameters Delta(o) = 24800 cm(-1) and B = 247 cm(-1). Further restricting the available cyanide in a reaction between Mo(CF(3)SO(3))(3) and (Et(4)N)CN in DMF, followed by recrystallization from DMF/MeOH, yields (Et(4)N)(5)[Mo(2)(CN)(11)] x 2DMF x 2MeOH (2). The dinuclear [Mo(2)(CN)(11)](5-) complex featured therein contains two octahedrally coordinated Mo(III) centers spanned by a bridging cyanide ligand. A fit to the magnetic susceptibility data for 2, gives J = -113 cm(-1) and g = 2.33, representing the strongest antiferromagnetic coupling yet observed through a cyanide bridge. Efforts to incorporate these new complexes in magnetic Prussian blue-type solids are ongoing.  相似文献   

13.
14.
15.
16.
CASPT2 calculations are performed on the dodecahedral and square antiprismatic isomers of the [Mo(CN)(8)](4)(-) and [W(CN)(8)](4)(-) complexes. The high-energy experimental bands above 40000 cm(-)(1) are assigned to MLCT transitions. The experimental observed trend of the extinction coefficients for the molybdenum and tungsten complex is reproduced by our CASSCF oscillator strengths. All bands below 40000 cm(-)(1) can be ascribed to ligand-field transitions, although small contributions from forbidden MLCT transitions cannot be excluded. In order to account for all experimental bands in the electronic spectrum of these octacyanocomplexes, a dynamic equilibrium in solution between the two isomeric forms must be hypothesized. Spin-orbit coupling effects are found to be more important for the square antiprismatic isomers; in particular, large singlet-triplet mixings are calculated for this isomer of [W(CN)(8)](4)(-). Ligand-field and Racah parameters as well as spin-orbit coupling constants are determined on the basis of the calculated transition energies. The obtained values for these parameters support the recently proposed model for exchange interactions in magnetic clusters and networks containing pentavalent octocyanometalates of molybdenum and tungsten.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号