首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural Studies with Usovites: Ba2CaMIIV2F14 (MIII = Mn, Fe), Ba2CaMnFe2F14 and Ba2CaCuM2IIIF14 (MIII = Mn, Fe, Ga). Single crystals of six compounds Ba2CaMIIM2IIIF14 were prepared to refine their usovite type structure (space group C2/c, Z = 4) using X‐ray diffractometer data. The cell parameters of the phases studied with MIIM2III= MnV2, FeV2, CuMn2, MnFe2, CuFe2 und CuGa2 are within the range 1374≤a/pm≤1384, 534≤b/pm≤542, 1474≤c/pm≤1510, 91, 3≤ß/°≤93, 2. The atoms Ca and MII are incompletely ordered on the 8‐ and 6‐coordinated positions, 4e and 4b, respectively. In the case of Ba2CaFeV2F14 and Ba2CaCuGa2F14 there is reciprocal substitution (x≈0, 1): (Ca1‐xMxII) (4e) and (M1‐xIICax) (4b). In the case of the other usovites Ca‐enriched phases Ba2Ca(M1‐yIICay)M2IIIF14 occured (up to y≈0, 35), exhibiting partial substitution at the octahedral position (4b) only, showing a corresponding increase in MII‐F distances. The distortion of [MIIF6] and [MIIIF6] octahedra within the structure is considerably enhanced on replacement by CuII and MnIII. The results of powder magnetic susceptibility measurements of Ba2CaMnV2F14 and Ba2CaFeV2F14 (TN≈7K) are reported.  相似文献   

2.
Lattice Constants and Ionic Radii of Pyrochlores CsMIIMIIIF6 From observed lattice constants a0 of 30 cubic pyrochlores CsMIIMIIIF6 (MII = Mg, Ni, Cu, Zn, Co, Mn; MIII = Ga, Cr, Fe, V, Ti) balanced values ac were calculated, which deviate in average less than 0.1% from the observed ones. Radii rc of the M(II) and M(III) ions are evaluated from the balanced values ac by means of an empiric equation; they reproduce the lattice constants a0 equally well. By analogy derived radii rII and rIII from additional pyrochlores CsMIIMIIIF6 are given and discussed in comparison with tabulated radii and observed M? F distances.  相似文献   

3.
The Crystal Structures of the Vanadium Weberites Na2MIIVIIIF7 (MII ? Mn, Ni, Cu) and of NaVF4 At single crystals of the vanadium(III) compounds NaVF4 (a = 790.1, b = 531.7, c = 754.0 pm, β = 101.7°; P21/c, Z = 4), Na2NiVF7 (a = 726.0, b = 1031.9, c = 744.6 pm; Imma, Z = 4) and Na2CuVF7 (a = 717.6, b = 1043.5, c = 754.6 pm; Pmnb, Z = 4) X-ray structure determinations were performed, at Na2MnVF7 (a = 746.7, c = 1821.6 pm; P3221, Z = 6) a new refinement. NaVF4 crystallizes in the layer structure type of NaNbO2F2. The fluorides Na2MIIVF7 represent new orthorhombic (MII ? Ni; Cu) resp. trigonal (MII ? Mn) weberites. The average distances within the [VF6] octahedra of the four compounds are in good agreement with each other and with data of related fluorides (V? F: 193.3 pm). The differences between mean bond lengths of terminal and bridging F ligands are 5% in NaVF4, but less than 1% in the weberites. Details and data for comparison are discussed.  相似文献   

4.
The Crystal Structure of the Hydrated Cyano Complexes NMe4MnII[(Mn, Cr)III(CN)6] · 3 H2O and NMe4Cd[MIII(CN)6] · 3 H2O (MIII = Fe, Co): Compounds Related to Prussian Blue The crystal structures of the isotypic tetragonal compounds (space group I4, Z = 10) NMe4MnII · [(Mn, Cr)III(CN)6] · 3 H2O (a = 1653.2(4), c = 1728.8(6) pm), NMe4Cd[Fe(CN)6] · 3 H2O (a = 1642.7(1), c = 1733.1(1) pm) and NMe4Cd[Co(CN)6] · 3 H2O (a = 1632.1(2), c = 1722.4(3) pm) were determined by X‐rays. They exhibit ⊥ c cyanobridged layers of octahedra [MIII(CN)6] and [MIIN4(OH2)2], which punctually are interconnected also || c to yield altogether a spaceous framework. The MII atoms at the positions linking into the third dimension are only five‐coordinated and form square pyramids [MIIN5] with angles N–MII–N near 104° and distances of Mn–N: 1 × 214, 4 × 219 pm; Cd–N: 1 × 220 resp. 222, 4 × 226 resp. 228 pm. Further details and structural relations within the family of Prussian Blue are reported and discussed.  相似文献   

5.
Tetragonal Fluoroperovskites AM0,750,25F3 Deficient in Cations: K4MnIIM2IIIF12 and Ba2Cs2Cu3F12 By heating 2KMnF3 + K2MnF6 and BaF2, CsF + CuF2 respectively, the isostructural tetragonal compounds K4Mn3F12 (a = 832.2, c = 1643.0 pm) and Ba2Cs2Cu3F12 (a = 854.1, c = 1704.1 pm) were prepared. They crystallize in a cation-deficient perovskite structure exhibiting ordering of octahedral vacancies. Single crystal structures determinations in the space group I41/amd, Z = 4, yielded the following average distances within the octahedra, which are Jahn-Teller distorted for MnIII and CuII:MnII? F = 208.3 pm, MnIII? F = 4 × 183.0/2 × 209.7 pm; Cu? F = 190.7/227.1 and 190.6/236.4 pm, respectively. The results are discussed in comparison with related compounds.  相似文献   

6.
Structural and Magnetochemical Studies of Ba5Mn3F19 and Related Compounds AII5MIII3F19 Single crystal structure determinations by X‐ray methods were performed at the following compounds, crystallizing tetragonally body‐centred (Z = 4): Sr5V3F19 (a = 1423.4(2), c = 728.9(1) pm), Sr5Cr3F19 (a = 1423.5(2), c = 728.1(1) pm), Ba5Mn3F19 (a = 1468.9(1), c = 770.3(1) pm, Ba5Fe3F19 (a = 1483.5(1), c = 766.7(1) pm), and Ba5Ga3F19 (a = 1466.0(2), c = 760.1(2) pm). Only Ba5Mn3F19 was refined in space group I4cm (mean distances for elongated octahedra Mn1–F: 185/207 pm equatorial/axial; for compressed octahedra Mn2–F: 199/182 pm), the remaining compounds in space group I4/m. In all cases the octahedral ligand spheres of the M1 atoms showed disorder, the [M1F6] octahedra being connected into chains in one part of the compounds and into dimers in the other. The magnetic properties of the V, Cr and Mn compounds named above and of Pb5Mn3F19 and Sr5Fe3F19 as well were studied; the results are discussed in context with the in part problematic structures.  相似文献   

7.
Transition Metal Complexes Containing the Ligands Pyrazine-2, 6-dicarboxylate and Pyridine-2, 6-dicarboxylate: Syntheses and Electrochemistry. Crystal Structure of NH4[RuCl2(dipicH)2] The coordination chemistry of the tridentate ligand pyrazine-2, 6-dicarboxylate (pyraz-2,6 = L) with transition metals in aqueous solution has been investigated. The reaction of the ligand with metal aqua ions (1:1) affords insoluble precipitates [MIIL(OH2)2] (M = Mn, Fe, Co, Ni, Cu, Zn, Cd). [TiOL(OH2)2], [VOL(H2O)2] and [UO2L(H2O)] were also prepared. [MIIIL2]? complexes (MIII ? FeIII, CoIII) were isolated as NH4+ and P(C6H5)4+ salts; they are strong one electron oxidants (E1/2 = +0.602 V and +0.795 V vs. NHE, respectively). Redox potentials of analogous complexes containing pyridine- 2, 6-dicarboxylate (L′) ligands have been determined by cyclic voltammetry: [ML′2]1-/2?: M = VIII: -0.591 V; CrIII: -0.712 V. It is shown that pymzine-2,6-dicarboxylate as compared to pyridine-2,6-dicarboxylate stabilizes metal complexes in low oxidation states (+II). The reaction of RuCl3 · nH2O with pyridine-2,6-dicarboxylic acid in aqueous solution affords the yellow-green anion [RuCl2(L′H)2]?. The crystal structure of NH4[RuCl2(L′H)2] has been determined. It crystallizes in the monoclinic space group P21/c with a = 8.812(2) Å b = 10.551(2) Å, c = 10.068(2) Å, β = 110.03(6)°, Z = 2; 2507 independent reflections; R = 0.032. The ruthenium centers are in an octahedral environment of two Cl? ligands (trans) and two bidentate pyridine-2, 6-hydrogendicarboxylate ligands which possess each one protonated, uncoordinated carboxylic group.  相似文献   

8.
A theoretical density functional study of the magnetic coupling interactions and magnetic anisotropy in a family of experimentally synthesized and theoretically modeled M′6M8(CN24) (M′=CuII, NiII or CoII; M=FeIII or CrIII) systems is presented. The calculations show that the interactions in the selected M′6M8(CN24) are all ferromagnetic and the near cubic symmetry of Cu6Fe8 is the origin of its negative magnetic anisotropy parameter D.  相似文献   

9.
On the Ordering of BIII and MV in Perovskites of Type A BIIIMVO6 (AII ? Ba, Sr; MV ? Sb, Nb, Ta) The perovskites Ba2BIIISbO6 crystallize monoclinic (BIII ? La, Pr, Nd) and cubic (BIII ? Sm, Eu, Gd, Tb, Dy, Yb, Lu, Y) respectively. The Sr compounds, Sr2BIIISbO6, have a monoclinic (BIII ? Nd, Sm, Eu, Dy), orthorhombic (BIII ? Yb, Lu, Y, Sc) or cubic (BIII ? In, Ga) perovskite structure. By intensity calculations and vibrational spectroscopic investigations deviations from a complete order between BIII and SbV are detectable. For perovskites Ba2BIIIMVO6 with MV ? Nb, Ta the incompleteness of cationic order can be demonstrated as well.  相似文献   

10.
On the coordination chemistry of phosphines and phosphinoxides. XXIII. Heavy metal complexes of tetramethyl-biphosphine The reactions of tetramethyl-biphosphine with salts of 3d elements including Cd and Hg, too, in THF, benzene, acetonitrile and alcohols, respectively, results in forming complexes of differing compositions: (MnXn)2{(CH3)2P? P(CH3}2)3? Mn = TiIII, VIII, CrIII, FeII, NiII, CuI; MX2{(CH3)2P? P(CH3)2}2? M = CoII, NiII, HgII; MX2 · (CH3)2P? P(CH3)2? M = FeII, NiII, Zn, Cd, HgII; X = Cl, Br, J. The partly intensively coloured complexes have low solubilities; this item complicates the performing of structure determining methods. Partial informations about the structures of the complexes are to be gained by magnetic and spectrophotometric measurements and X-ray investigations. The tendency of (CH3)2P? P(CH3)2 to form complexes with transition metals differs from that of other biphosphines. Splitting of the P? P bond due to metal salts does not occur. (CH3)2P? P(CH3)2 acts as a monodentate or bidentate ligand, like other members of the R2P? PR2 series do too. The forming of ligand bridges seems to be favoured in comparison to the chelate function.  相似文献   

11.
New Fluorides MIIIMIVF7 with MIII = SE, Tl and MIV = Sn, Pb, Pt Colourless Fluorides MSnF7 (M = La, Sm, Gd, Yb, Lu, Tl), TlPbF7 and yellow compounds MPtF7 (M = Eu, Y, Lu) were obtained for the first time either as single crystals or powder samples. They crystallize isostructural to SmZrF7 (space group P21/c-C2h5, Nr. 14; P21/n, Z = 4). Crystal data see “Inhaltsübersicht”.  相似文献   

12.
On X-Ray Single Crystal Studies of Na2FeAlF7, Na2MIIGaF7 (MII = Ni, Zn), and Na2ZnFeF7 and the Structural Chemistry of Weberites At single crystals of the orthorhombic weberite Na2NiGaF7 (a = 716.1, b = 1021.6, c = 740.9 pm; Imma, Z = 4) and of the monoclinic variants (C2/c, Z = 16) Na2FeAlF7 (a = 1242.6, b = 727.8, c = 2420.6 pm, β = 99.99°), Na2ZnGaF7 (a = 1251.9, b = 730.3, c = 2435.3 pm, β = 99.74°) and Na2ZnFeF7 (a = 1261.0, b = 7.359, c = 2453.8 pm, β = 99.70°) complete X-ray structure determinations were performed. The results and the influence of radii on the bridge angles MII–F–MII and MII–F–MIII are discussed in connection with general features within the structural chemistry of 28 weberites.  相似文献   

13.
The structure of BaVOF4 has been determined by X-ray diffraction data from a single crystal obtained by hydrothermal synthesis: S.G. Fdd2 (acentric), Z = 16, a = 7.920(1), b = 27.608(2) and c = 7.375(1) Å with R = 0.0262 and Rw = 0.0273 for 1 508 independent reflections and 64 parameters. The network is built up from cis-linked VOF5 octahedra forming infinite kinked chains running along the [101] and [101] directions, connected by barium cations. The location of O2? and F? ions is discussed using bond valence calculations. As for BaTiOF4 and some compounds in the series AIIMIIIF5 (A = Ba, Sr and M = Ga, Al, Mn), the structure can be described in terms of a quasi hexagonal compact planes stacking of Ba2+, O2? and F? ions.  相似文献   

14.
Crystal Structure Determinations of Four Monoclinic Weberites Na2MIIMIIIF7 (MII = Fe, Co; MIII = V, Cr) By solid state reaction of the binary fluorides single crystals of the following weberites were prepared and their monoclinic structure (space group C2/c, Z = 16) determined by X-ray methods: Na2FeVF7 (a = 1 271.0(3), b = 742.9(1), c = 2 471.6(5) pm, β = 100.03(3)°; R1 = 0.043 (1 545 Reflexe); Fe? F = 203.8, V? F = 193.0 pm); Na2FeCrF7 (a = 1 262.5(3), b = 739.1(1), c = 2 460.5(5) pm, β = 99.93(3)°; R1 = 0.029 (2 340); Fe? F = 203.6, Cr? F = 190.5 pm); Na2CoVF7 (a = 1 270.3(5), b = 739.1(3), c = 2 465.1(10) pm, β = 100.02(3)°; R1 = 0.028 (2 250); Co? F = 201.6, V? F = 193.6 pm); Na2CoCrF7 (a = 1 257.8(3), b = 733.5(1), c = 2 441.5(5) pm, β = 99.64(3)°; R1 = 0.030 (2 227); Co? F = 201.2, Cr? F = 190.2 pm). Concerning the above average distances within the distorted [MF6] octahedra and the shape of [NaF8] coordination details are given and discussed.  相似文献   

15.
Inhaltsübersicht. Fluortrirutile LiMIIMIIIF6 kristallisieren tetragonal in dor Raumgruppe P42/mnm mit Li in Position (2a) und MII und MIII statistisch vorteilt in (4e). An Einkristallen und durch Pulvermessungen wurde die Verteilung der Kationen untersucht, wozu die neu dargestellte Rhodiumverbindung LiZnRhF6 auf Grund des unterschiedlichen Streuvermögens der Kationen besonders geeignet war. Verbindungen LiCuMIIIF6 zeigen die einfache Rutilstruktur. Investigations of the Quaternary Fluorides LiMIIMIIIF6. On the Distribution of Cations in Fluorotrirutiles Abstract. Trirutiles LiMIIMIIIF6 crystallize tetragonally in the space group P42/mnm with Li in position (2a) und MII and MIII statistically distributed in (4e). By single-crystal X-Ray diffraction and by powder work cation ordering was examined for which the new compound LiZnRhF, was especially adapted. Compounds LiCuMIIIF6 are disordered rutile phases.  相似文献   

16.
Structural and Magnetochemical Studies at the Ternary Phosphates Ba2MII(PO4)2 (MII = Mn, Co) and Refinement of the Crystal Structure of BaNi2(PO4)2 Single crystals of the following phosphates were grown by the floating zone technique using a mirror furnace and their crystal structures refined (0,02 < R1 < 0,04 and 0,04 < wR2 < 0,10, resp.): Ba2Mn(PO4)2 (a = 531.1(1), b = 896.8(1), c = 1625.6(3) pm, β = 90.26(1)°), Ba2Co(PO4)2 (a = 529.8(1), b = 884.4(1), c = 1614.4(3) pm, β = 90.68(2)°) and BaNi2(PO4)2 (a = 480.0(1), c = 2327.3(5) pm, Z = 3, space group R3). Both compounds Ba2MII(PO4)2 crystallize with Z = 4 in space group P21/n of the monoclinic Ba2Ni(PO4)2 type; BaNi2(PO4)2 has the hexagonal‐rhombohedral structure of the BaNi2(AsO4)2 type. Magnetic measurements of powders of Ba2Mn(PO4)2 and Ba2Co(PO4)2 yielded room temperature moments of μeff = 5,73 and 4,93 μB, resp., but only the manganese compound obeys the Curie‐Weiss law down to low temperatures. Weak antiferromagnetic interactions at both compounds only near TM ≈ 5 K lead to a reciprocal susceptibility minimum.  相似文献   

17.
The System Cs/Cu/F: On CsCuIICuIIIF6 ?CsCuF3,6’? is described in literature as a darkbrown powder which is supposed to crystallize in a cubic lattice (a = 882 pm, Debyeogramms). However Guinier photographs show that ?CsCuF3,6’? is a mixture of CsCuIICuIIIF6 (black, isotypic to CsNiIINiIIIF6, a = 706.7 b = 727.7, c = 1032.2 pm, Z = 4) and Cs2CuCuIIIF6 (auburn, pseudocubic, a = 623.4 c = 886.4 pm, Z = 2).  相似文献   

18.
On the Coordination Chemistry of Phosphines and Phosphinoxides. XXXI. Cobalt and Rhodium Complexes of Primary Mercaptoalkylphosphines and Remarks on the Complex Formation of Quadridentate P,P,S,S Ligands Primary Mercaptoalkylphosphines (H2P? CH2 · CH2? SH; H2P? CH2 · CHCH3? SH) react with d7-metal salts to give octahedron 1:3 chelat complexes. In case of cobalt the oxidation of CoII to CoIII are obtained by formation of H2. Structure and properties of these complexes as well as their reactivity like S-alkylation or metallation with following reactions are described. Reaction scheme see ?Inhaltsübersicht”?. With quadridentate ligands HS+ +PH+ +PH+ +SH = L result chelat-complexes of the type [MIII? L XNH3] (M = Co, Rh) and such as [MII? L] (M = Ni, Pd, Pt).  相似文献   

19.
Compounds of the Type Ba3BIIM O9 with BII ? Mg, Ca, Sr, Ba, and MV ? Nb, Ta The hexagonal perovskites Ba3BIIMO9 (MV ? Nb, Ta) crystallize with BII ? Mg Ca in a 3 L structure (sequence (c)3) and BII ?; Sr in the hexagonal BaTiO3 type (6 L; sequence (hcc)2) with an 1:2 order for the B and M ions. Intensity calculations for Ba3SrNb2O9 and Ba3SrTa2O9 gave in the space group P63/mmc a refined, intensity related R′ value of 8.4% (Nb) and 9.0% (Ta) respectively. For BII ? Ba the perovskite Ba3BaTa2O9 has an orthorhombic distorted 6 L structure and forms with Ba3SrTa2O9 a continuous series of mixed crystals (Ba3Sr1?xBaxTa2O9). In the system Ba3Sr1?xBaxNb2O9 the range of existence of the hexagonal BaTiO3 type is confined to the Sr richer end. The pure Ba compound possesses a proper structure type (5 L: Ba5BaNb3□O13.51.5).  相似文献   

20.
Ternary fluorides with tetravalent chromium: MIICrF6 with MII = Ba, Sr, Ca, Mg, Zn, Cd, Hg, Ni. We obtained hithertoo unknown BaCrF6 (light yellow) and SrCrF6 (yellow), both of (hexag.) BaSiFB-type [a = 7.328, c = 7.137 Å; and a = 7.109 c = 6.863 Å, respectively] as well as CaCrF6 (pink) [a = 5.336, c = 14.153 Å], MgCrF6 (pink) [a = 5.091 c = 13.143 Å], CdCrF6 (pink) [a = 5.146, c = 14.075 Å] and HgCrF6 (orange-yellow) [a = 5.128, c = 14.265 A], all of (hexag.) LiSbF6-type. NiCrF6 (brown) [a = 4.975, c = 13.262 Å] and ZnCrF6 (orange-yellow) [a = 5.026, c = 13.337 Å] crystallize in the hexag. VF3-type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号