首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
On the Diphosphates M4(P2O7)3 with M = V, Cr and the Electronic Spectra of Vanadium(III) and Chromium(III) Phosphates Single crystals of ochre colored or dark brown V4(P2O7)3 ( I ) can be obtained by thermal transformation of an amorphous intermediate synthesized from V2O5 and aqueous H3PO3 and H3PO4; brown crystals of Cr4(P2O7)3 ( II ) are formed during thermal decomposition of Cr(PO3)3, C. I and II are isostructural, crystallizing in orthorhombic space group Pbn21 or Pbnm with Z = 4 and lattice constants a = 9.601(2), b = 21.425(5), c = 7.470(4) Å and a = 9.38(1), b = 21.00(4), c = 7.26(2) Å, respectively. Probably due to slight substitution of vanadium(V) for phosphorus atoms (P:Vv ~ 40:1) nonstoichiometic phase composition is found for I prepared at T ~ 1400°C. I and II are characterized by IR and electronic spectroscopy; their electronic spectra are discussed in comparison with those of fourteen other VIII and CrIII phosphates. This includes a discussion of optical properties of CsCrP2O7 changing color from brown to green on change from daylight to artificial light. Some conclusions on the structural arrangement of I and II are drawn.  相似文献   

2.
The series of isotypic anhydrous ortho-pyrophosphates MIII(WVIO2)2(P2O7)(PO4) (M: Sc, V, Cr, Fe, Mo, Ru, Rh, In, Ir) was obtained via vapor phase moderated solid state reactions in sealed ampoules. The crystal structure of the phosphates MIII(WVIO2)2(P2O7)(PO4) (M: V, Ru, Rh) was solved from single crystal X-ray data (C2/c, Z = 16). Fairly regular MO6 and distorted WO6 octahedra share vertices with PO4 and P2O7 units to form a 3D network. For the ortho-pyrophosphates with M: V3+, Cr3+, and Fe3+ the oxidation state of M is confirmed by magnetic measurements. 31P-MAS-NMR spectra of the diamagnetic phosphates MIII(WVIO2)2(P2O7)(PO4) (M: Sc, In, Ir) show surprisingly different isotropic chemical shifts for the seven phosphorus sites. VIII(WVIO2)2(P2O7)(PO4) occurs as equilibrium phase in the quasi-binary system (V1–xWx)OPO4 at x = 0.67 and exhibits a small homogeneity range 0.60 ≤ x ≤ 0.67. The scandium compound shows a fully inverted occupancy of the M sites according to the formulation W(Sc1/2W1/2O2)2(P2O7)(PO4).  相似文献   

3.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXIII [1] In2P2O7 an Indium(I)‐diphosphatoindate(III), and In4(P2O7)3 — Synthesis, Crystallization, and Crystal Structure Solid state reactions via the gas phase lead to the new mixed‐valence indium(I, III)‐diphosphate In2P2O7. Colourless single crystals of In2P2O7 have been grown by isothermal heating of stoichiometric amounts of InPO4 and InP (800 °C; 7d) using iodine as mineralizer. The structure of In2P2O7 [P21/c, a = 7.550(1) Å, b = 10.412(1) Å, c = 8.461(2) Å, b = 105.82(1)°, 2813 independent reflections, 101 parameter, R1 = 0.031, wR2 = 0.078] is the first example for an In+ cation in pure oxygen coordination. Observed distances d(InI‐O) are exceptionally long (dmin(InI‐O) = 2.82 Å) and support assumption of mainly s‐character for the lone‐pair at the In+ ion. Single crystals of In4(P2O7)3 were grown by chemical vapour transport experiments in a temperature gradient (1000 → 900 °C) using P/I mixtures as transport agent. In contrast to the isostructural diphosphates M4(P2O7)3 (M = V, Cr, Fe) monoclinic instead of orthorhombic symmetry has been found for In4(P2O7)3 [P21/a, a = 13.248(3) Å, b = 9.758(1) Å, c = 13.442(2) Å, b = 108.94(1)°, 7221 independent reflexes, 281 parameter, R1 = 0.027, wR2 = 0.067].  相似文献   

4.
Two new potassium vanadium phosphates have been prepared and their structures have been determined from analysis of single crystal X-ray data. The two compounds, K3(VO)(V2O3) (PO4)2(HPO4) and K3(VO)(HV2O3)(PO4)2(HPO4), are isostructural, except for the incorporation of an extra hydrogen atom into the nearly identical frameworks. The structures consist of a three-dimensional network of [VO]n chains connected through phosphate groups to a [V2O3] moiety. Magnetic susceptibility experiments indicate that in the case of the di-hydrogen compound, there are no significant magnetic interactions between the three independent vanadium (IV) centers. Crystal data: for K3(VO)(V2O3)(PO4)2 (HPO4), Mr = 620.02, orthorhombic space group Pnma (No. 62), a = 7.023(4) Å, b = 13.309(7) Å, c = 14.294(7) Å, V = 1336(2) Å3, Z = 4, R = 5.02%, and Rw = 5.24% for 1238 observed reflections [I > 3σ(I)]; for K3(VO)(HV2O3)(PO4)2(HPO4), Mr = 621.04, orthorhombic space group Pnma (No. 62), a = 6.975(3) Å, b = 13.559(7) Å, c = 14.130(7) Å, V = 1336(1) Å3, Z = 4, R = 6.02%, and Rw = 6.34% for 1465 observed reflections [I > 3σ(I)].  相似文献   

5.
Cadmium in Square Pyramids of Oxygen in the Barium Cadmium Oxovanadate: Ba2Cd3(VO4)2(V2O7) Single crystals of Ba2Cd3(VO4)2(V2O7) have been prepared by crystallization of a melt of BaCO3, CdO and V2O5. It shows orthorhombic symmetry, space group D? P212121, a = 7.206(2), b = 9.978(1), c = 19.617(3) Å, Z = 4. The crystal structure is characterized by (VO4)3? and (V2O7)4? groups, CdO6 octahedra, BaO12 and BaO9 polyhedra and with respect to Cd containing oxides unusual square pyramids of O2? around Cd2+. The observed [CdO4] zickzack chains are connected by VO4 tetrahedra, V2O7 double tetrahedra and CdO5 pyramids, forming a tunnel structure along [100]. The tunnels are filled by barium.  相似文献   

6.
Uranyl vanadate compounds with divalent cations, M(UO2)(V2O7) (M = Ca, Sr) and Sr3(UO2)(V2O7)2, were synthesized by flux crystal growth, and their crystal structures were solved using single‐crystal X‐ray diffraction data. Ca(UO2)V2O7 and Sr(UO2)V2O7 were synthesized from reactants with molar ratios M:U:V of 1:1:2 and identical heating conditions, and increasing the M:U:V ratio to 3:1:4 resulted in Sr3(UO2)(V2O7)2. Crystallographic data for M(UO2)V2O7 compounds are: a = 7.1774(18) Å, b = 6.7753(17) Å, c = 8.308(2) Å; V = 404.01(18) Å3; space group Pmn21, Z = 2 for Ca; a = 13.4816(11) Å, b = 7.3218(6) Å, c = 8.4886(7) Å; V = 837.91(12) Å3; space group Pnma, Z = 4 for Sr. Compound Sr3(UO2)(V2O7)2 has a = 6.891(3) Å, b = 7.171(3) Å, c = 14.696(6) Å, α = 85.201(4)?, β = 78.003(4)?, γ = 89.188(4)?; V = 707.9(5) Å3; space group P1 , Z = 2. The framework structure of Sr(UO2)(V2O7) is related to that of Pb(UO2)(V2O7) reported previously, while that of Ca(UO2)(V2O7) has a different topology. The topological polymorphism of the [(UO2)(V2O7)]‐type framework may be due to the differing ionic radii of the guest M2+ cations. Compound Sr3(UO2)(V2O7)2 has a modular structure based on two different types of electroneutral layers: [Sr(UO2)(V2O7)] and [Sr2(V2O7)]. Structural complexities were calculated, and Raman spectra were collected and their peaks were assigned.  相似文献   

7.
The crystallization of complex phosphates from the melts of Cs2O-P2O5-CaO-MIII2O3 (MIII—Al, Fe, Cr) systems have been investigated at fixed value Cs/P molar ratios equal to 0.7, 1.0 and 1.3 and Са/Р=0.2 and Ca/МIII=1. The fields of crystallization of CsCaP3O9, β-Ca2P2O7, Cs2CaP2O7, Cs3CaFe(P2O7)2, Ca9MIII(PO4)7 (MIII—Fe, Cr), Cs0.63Ca9.63Fe0.37(PO4)7 and CsCa10(PO4)7 were determined. Obtained phosphates were investigated using powder X-ray diffraction and FTIR spectroscopy. Novel whitlockite-related phases CsCa10(PO4)7 and Cs0.63Ca9.63Fe0.37(PO4)7 have been characterized by single crystal X-ray diffraction: space group R3c, a=10.5536(5) and 10.5221(4) Å, с=37.2283(19) and 37.2405(17) Å, respectively.  相似文献   

8.
Dicaesium divanadium trioxide phosphate hydrogenphosphate, Cs2V2O3(PO4)(HPO4), (I), and dicaesium tris[oxidovanadate(IV)] hydrogenphosphate dihydrate, Cs2[(VO)3(HPO4)4(H2O)]·H2O, (II), crystallize in the monoclinic system with all atoms in general positions. The structures of the two compounds are built up from VO6 octahedra and PO4 tetrahedra. In (I), infinite chains of corner‐sharing VO6 octahedra are connected to V2O10 dimers by phosphate and hydrogenphosphate groups, while in (II) three vanadium octahedra share vertices leading to V3O15(H2O) trimers separated by hydrogenphosphate groups. Both structures show three‐dimensional frameworks with tunnels in which Cs+ cations are located.  相似文献   

9.
The crystal structures of two new diphosphates, sodium hexamanganese bis­(diphosphate) triphosphate, NaMn6(P2O7)2(P3O10), and potassium hexacadmium bis­(diphosphate) triphosphate, KCd6(P2O7)2(P3O10), confirm the rigidity of the M6(P2O7)2(P3O10) matrix (M is Mn or Cd) and the relatively fixed dimensions of the tunnels extending in the a direction of the unit cell. The compounds are isomorphous; the P2O74? anion and the alkali metal cations lie on mirror planes. Bond‐valence analysis of the bonding details of the atoms found within the tunnels permits a prediction of the conductivity.  相似文献   

10.
The First Vanadium(III) Borophosphate: Synthesis and Crystal Structure of CsV3(H2O)2[B2P4O16(OH)4] CsV3(H2O)2[B2P4O16(OH)4] was prepared under mild hydrothermal conditions (T = 165 °C) from mixtures of CsOH(aq), VCl3, H3BO3, and H3PO4 (molar ratio 1 : 1 : 1 : 2). The crystal structure was determined by X‐ray single crystal methods (monoclinic; space group C2/m, No. 12): a = 958.82(15) pm, b = 1840.8(4) pm, c = 503.49(3) pm; β = 110.675(4)°; Z = 2. The anionic partial structure contains oligomeric units [BP2O8(OH)2]5–, which are built up by a central BO2(OH)2 tetrahedron and two PO4 tetrahedra sharing common corners. VIII is octahedrally coordinated by oxygen of adjacent phosphate tetrahedra and OH groups of borate tetrahedra as well as oxygen of phosphate tetrahedra and H2O molecules, respectively (coordination octahedra VO4(OH)2 and VO4(H2O)2). The oxidation state +3 for vanadium was confirmed by measurements of the magnetic susceptibility. The trimeric borophosphate groups are connected via vanadium centres to form layers with octahedra‐tetrahedra ring systems, which are likewise linked via VIII‐coordination octahedra. Overall, a three‐dimensional framework constructed from VO4(OH)2 and VO4(H2O)2 octahedra as well as BO2(OH)2 and PO4 tetrahedra results. The structure contains channels running along [001], which are occupied by Cs+ in a distorted octahedral coordination (CsO4(H2O)2).  相似文献   

11.
A new layered phosphate, Na7Y2(P2O7) 2(P3O10), containing both [P2O7]4? and [P3O10]5? groups, has been prepared. It crystallizes in the monoclinic space group P2/c with a = 16.205(4), b = 5.3746(9), c = 12.309(4) Å, β = 97.96(2)°, V = 1061.7(5) Å3 and Z = 2. The structure was solved and refined to R1 = 0.0298 and wR2 = 0.0698 for 1844 independent reflections with I > 2σ(I). It consists of layers of corner and edge-sharing YO7 polyhedra, P2O7 and P3O10 groups. Each layer is built up from two parallel [YP2O7] slabs, held together by the P3O10 groups. This arrangement gives rise to intersecting tunnels within the layer. The Na+ cations are located in the tunnels and between the layers. Both P2O7 and P3O10 groups contain unshared oxygen atoms directed toward the interlayer space and toward the tunnels. The P2O7 groups show a staggered configuration. In addition to this original layered framework, the title compound provides the third example of a compound containing a mixed anion of [P2O7]4? and [P3O10]5?. The structure was compared with the two previously reported ones, containing such a mixed anion: NH4Cd6(P2O7) 2(P3O10) [6] and Cs2Mo5O2(P2O7)3 · (P3O10) [7].  相似文献   

12.
Contributions on Crystal Structures and Thermal Behaviour of Anhydrous Phosphates. XXIII. Preparation, Crystal Structure, and Thermal Behaviour of the Mercury(I) Phosphates α-(Hg2)3(PO4)2, β-(Hg2)3(PO4)2, and (Hg2)2P2O7 Light-yellow single crystals of (Hg2)2P2O7 have been obtained via chemical vapour transport in a temperature gradient (500 °C → 450 °C, 23 d) using Hg2Cl2 as transport agent. Characteristic feature of the crystal structure (P2/n, Z = 2, a = 9,186(1), b = 4,902(1), c = 9,484(1) Å, β = 98,82(2)°, 1228 independent of 5004 reflections, R(F) = 0,066 for 61 variables, 7 atoms in the asymmetric unit) are Hg22+-units with d(Hg1–Hg1) = 2,508 Å and d(Hg2–Hg2) = 2,519 Å. The dumbbells Hg22+ are coordinated by oxygen, thus forming polyhedra [(Hg12)O4] and [(Hg22)O6]. These polyhedra share some oxygen atoms. In addition they are linked by the diphosphate anion P2O74– (ecliptic conformation; ∠(P,O,P) = 129°) to built up the 3-dimensional structure. Under hydrothermal conditions (T = 400 °C) orange single crystals of the mercury(I) orthophosphates α-(Hg2)3(PO4)2 and β-(Hg2)3(PO4)2 have been obtained from (Hg2)2P2O7 and H3PO4 (c = 1%). The crystal structures of both modifications have been refined from X-ray single crystal data [α-form (β-form): P21/c (P21/n), Z = 2 (2), a = 8,576(3) (7,869(3)), b = 4,956(1) (8,059(3)), c = 15,436(3) (9,217(4)) Å, β = 128,16(3) (108,76(4))°, 1218 (1602) independent reflections of 4339 (6358) reflections, R(F) = 0,039 (0,048) for 74 (74) variables, 8 (8) atoms in the asymmetric unit]. In the structure of α-(Hg2)3(PO4)2 three crystallographically independent mercury atoms, located in two independent dumbbells, are coordinated by three oxygen atoms each. Thus, [(Hg2)O6] dimers with a strongly distorted tetrahedral coordination of all mercury atoms are formed. Such dimers are present besides [(Hg2)O5]-polyhedra in the less dense crystal structure of β-(Hg2)3(PO4)2 (d(Hg–Hg) = 2,518 Å). The mercury(I) phosphates are thermally labile and disproportionate between 200 °C (β-(Hg2)3(PO4)2) and 480 °C (α-(Hg2)3(PO4)2) to elemental mercury and the corresponding mercury(II) phosphate.  相似文献   

13.
The crystal structure of Rb2V3P4O17 has been determined from single-crystal X-ray diffraction data. Rb2V3P4O17 crystallizes in the orthorhombic space group Pnma (No. 62) with a = 17.502(7), b = 7.292(2), c = 11.399(6) Å3, V = 1455(1) Å3, Z=4, R=0.0295, RW = 0.0320 for 1129 unique reflections with I > 2.5 σ(I). The structure contains intersecting tunnels where the Rb+ cations are located. The framework can be described as consisting of V2O10 units formed from one VO5 square pyramid and one VO6 octahedron sharing a corner, and infinite chains of corner-shared VO6 octahedra, which are linked in three dimensions by pyrophosphate groups. The structural formula is Rb2(VO)3(P2O7)2. A single-phase product can be obtained by heating appropriate amounts of Rb4V2O7, VO2, V, and P2O5 in an evacuated fused silica tube at 950°C. Powder magnetic susceptibility data confirm the presence of V4+ (d1) ions without magnetic ordering down to 3 K.  相似文献   

14.
Ag6(VIVO)2(PO4)2(P2O7) was obtained by reaction of Ag3PO4 and (VO)2P2O7 (sealed ampoule, 550 °C, 3 d). The crystal structure of the new mixed ortho‐pyrophosphate was determined from X‐ray single‐crystal data [Pnma, Z = 4, a = 12.759(3) Å, b = 17.340(4) Å, c = 6.418(1) Å, R1 = 0.071, wR2 = 0.184 for 3174 unique reflections with Fo > 4σ(Fo), 141 variables]. Ag+ ions are located in between layers [(VIVO)2(PO4)2(P2O7)]6–. Equilibrium relations of the new phosphate to neighboring phases were determined. The electronic structure of the (VIV≡O)2+ group was investigated by polarized electronic absorption spectroscopy (ν̃1a = 9450 cm–1, ν̃1b = 9950 cm–1, ν̃2 = 14750 cm–1), EPR spectroscopy [X‐ and Q‐band, powder and single crystal, orthorhombic crystal g‐tensor with g1 = 1.9445(3), g2 = 1.9521(3), g3 = 1.9695(3)], and magnetic measurements (powder, μexp/μB = 1.71, Θp = –1.7 K).  相似文献   

15.
2‐Amino‐3‐hydroxypyridinium dioxido(pyridine‐2,6‐dicarboxylato‐κ3O2,N,O6)vanadate(V), (C5H7N2O)[V(C7H3NO4)O2] or [H(amino‐3‐OH‐py)][VO2(dipic)], (I), was prepared by the reaction of VCl3 with dipicolinic acid (dipicH2) and 2‐amino‐3‐hydroxypyridine (amino‐3‐OH‐py) in water. The compound was characterized by elemental analysis, IR spectroscopy and X‐ray structure analysis, and consists of an anionic [VO2(dipic)] complex and an H(amino‐3‐OH‐py)+ counter‐cation. The VV ion is five‐coordinated by one O,N,O′‐tridentate dipic dianionic ligand and by two oxide ligands. Thermal decomposition of (I) in the presence of polyethylene glycol led to the formation of nanoparticles of V2O5. Powder X‐ray diffraction (PXRD) and scanning electron microscopy (SEM) were used to characterize the structure and morphology of the synthesized powder.  相似文献   

16.
Optical spectra (powder reflectance, UV/Vis/NIR region), and temperature dependent magnetic behavior (χ, μ/μB) were recorded for the series of anhydrous europium(III) phosphates EuIII3O3(PO4), EuIIIPO4, EuIII2P4O13, lt- and ht-EuIII(PO3)3, and EuIIIP5O14. By modeling within the AOM framework, the experimental data can be related to the ligand-field splitting experienced by the Eu3+ ions in the various mainly low-symmetry coordination environments. Our study confirms the well-established relation eσ(Eu3+–O2–) ~ d(Eu3+–O2–)–7.0 between the AOM parameter and the interatomic distance. In addition it is shown that eσ(Eu3+–O2–) depends strongly on the highly variable polarizability of the oxygen ligator atoms. This polarizability can be related to the optical basicity Λ of the various phosphates.  相似文献   

17.
The novel title polyvanadate(V), poly[[octa‐μ‐aqua‐dodecaaqua‐μ4‐octacosaoxidodecavanadato‐hexasodium] tetrahydrate], [Na6(H2O)20(V10O28)·4H2O]n, contains [V10O28]6− anions which lie about inversion centres and have approximate 2/m symmetry and which are linked to [Na3(H2O)10]3+ cations through two terminal and two μ2‐bridging O atoms. The structure contains three inequivalent Na+ cations, two of which form [Na2(H2O)8]n chains, which are linked via NaO6 octahedra involving the third Na+ ion, thus forming a three‐dimensional framework.  相似文献   

18.
Single crystals of the oxidephosphates TiIIITiIV3O3(PO4)3 (black), CrIII4TiIV27O24(PO4)24 (red-brown, transparent), and FeIII4TiIV27O24(PO4)24 (brown) with edge-lengths up to 0.3 mm were grown by chemical vapour transport. The crystal structures of these orthorhombic members (space group F2dd ) of the lazulite/lipscombite structure family were refined from single-crystal data [TiIIITiIV3O3(PO4)3: Z=24, a=7.3261(9) Å, b=22.166(5) Å, c=39.239(8) Å, R1=0.029, wR2=0.084, 6055 independent reflections, 301 variables; CrIII4TiIV27O24(PO4)24: Z=1, a=7.419(3) Å, b=21.640(5) Å, c=13.057(4) Å, R1=0.037, wR2=0.097, 1524 independent reflections, 111 variables; FeIII4TiIV27O24(PO4)24: Z=1, a=7.4001(9) Å, b=21.7503(2) Å, c=12.775(3) Å, R1=0.049, wR2=0.140, 1240 independent reflections, 112 variables). For TiIIITiIVO3(PO4)3 a well-ordered structure built from dimers [TiIII,IV2O9] and [TiIV,IV2O9] and phosphate tetrahedra is found. The metal sites in the crystal structures of Cr4Ti27O24(PO4)24 and Fe4Ti27O24(PO4)24, consisting of dimers [MIIITiIVO9] and [TiIV,IV2O9], monomeric [TiIVO6] octahedra, and phosphate tetrahedra, are heavily disordered. Site disorder, leading to partial occupancy of all octahedral voids of the parent lipscombite/lazulite structure, as well as splitting of the metal positions is observed. According to Guinier photographs TiIII4TiIV27O24(PO4)24 (a=7.418(2) Å, b=21.933(6) Å, c=12.948(7) Å) is isotypic to the oxidephosphates MIII4TiIV27O24(PO4)24 (MIII: Cr, Fe). The UV/vis spectrum of Cr4Ti27O24(PO4)24 reveals a rather small ligand-field splitting Δo=14,370 cm−1 and a very low nephelauxetic ratio β=0.72 for the chromophores [CrIIIO6] within the dimers [CrIIITiIVO9].  相似文献   

19.
Phase equilibria in the systems YPO4-Mg3(PO4)2, YPO4-Mg2P2O7 and YPO4-Mg3(PO4)2-Mg2P2O7 have been examined by thermal, X-ray and microscopic methods. Their phase diagrams have been provided.
Zusammenfassung Mittels thermischen, röntgenografischen und mikroskopischen Methoden wurden die Phasengleichgewichte in den Systemen YPO4-Mg3(PO4)2, YPO4-Mg2 P2O7 und YPO4-Mg3(PO4)2-Mg2P2O7 untersucht und deren Phasendiagramme ermittelt.
  相似文献   

20.
>From Small Fragments to New Poly‐alkoxo‐oxo‐metalate Derivatives: Syntheses and Crystal Structures of K4[VIV12O12(OCH3)16(C4O4)6], Cs10[VIV24O24(OCH3)32(C4O4)12][VIV8O8(OCH3)16(C2O4)], and M2[VIV8O8(OCH3)16(VIVOF4)] (M = [N(nBu)4] or [NEt4]) By solvothermal reaction of ortho‐vanadicacid ester [VO(OMe)3] with squaric acid and potassium or caesium hydroxide the compounds K4[VIV12O12(OCH3)16(C4O4)6] ( 2 ) and Cs10[VIV24O24(OCH3)32(C4O4)12][VIV8O8(OCH3)16(C2O4)] ( 3 ) could be syntesized. With tetra‐n‐butyl‐ or tetra‐n‐ethylammonium fluoride [N(nBu)4]2[VIV8O8(OCH3)16(VIVOF4)] ( 4 ) and [N(Et)4]2[VIV8O8(OCH3)16(VIVOF4)] ( 5 ) could be isolated. In 2 and 3 the corners of a tetrahedron or cube resp. are occupied by {(VO)3(OMe)4} groups and connected along the edges of the tetrahedron resp. cube by six or twelve resp. squarato‐groups. The octanuclear anions in the compounds 3 , 4 , and 5 are assumedly built up by fragments of the ortho‐vanadicacid ester [VO(OMe)3]. Around the anions C2O42— or VOF4 these oligormeric chains are closed to a ring . Crystal data: 2 , tetragonal, P43, a = 18.166(3)Å, c = 29.165(7)Å, V = 9625(3)Å3, Z = 4, dc = 1.469 gcm—3; 3 , orthorhombic, Pbca, a = 29.493(5)Å, b = 25.564(4)Å, c = 31.076Å, V = 23430(6)Å3, Z = 4, dc = 1.892 gcm—3; 4 , monoclinic, P21/n, a = 9.528(1)Å, b = 23.021(2)Å, c = 19.303(2)Å, β = 92.570(2)°, V = 4229.8(5)Å3, Z = 2, dc = 1.391 gcm—3; 5 , monoclinic, P21/n, a = 16.451(2)Å, b = 8.806(1)Å, c = 23.812(1)Å, β = 102.423(2)°, V = 3368.7(6)Å3, Z = 2, dc = 1.534 gcm—3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号