首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On n,π*- as well as on π,π*-excitation, the 4,5-epoxy-α-ionones (E)- 1 , (E)- 2 , and (E)- 3 undergo (E)/(Z)-isomerization and subsequent γ-H-abstraction leading to the corresponding 4-hydroxy-β-ionones (E/Z)- 9 , (E/Z)- 13 , and (E/Z)- 17 as primary photoproducts. On photolysis of (E)- 3 , as an additional primary photoproduct, the β,γ-unsaturated σ,?-epoxy ketone 18 was obtained. The other isolated compounds, namely the 2H-pyrans 10A + B and 14A + B as well as the retro γ-ionones 11 and 15A + B , represent known types of products, which are derived from the 4-hydroxy-β-ionones (E/Z)- 9 and (E/Z)- 13 , respectively.  相似文献   

2.
The syntheses, photolyses, and thermolyses of the α,β-unsaturated silyl ketones (E/Z)-7, (E)- 8 , and (E)- 9 are described. On n,π*-excitation (λ > 347 mm), the aforementioned compounds undergo (E/Z)-isomerization followed by γ-H abstraction. The intermediate enols are trapped intermolecularly by siloxycarbenes leading to the dimeric acetals 27A + B, 30A + B , and 31A + B . In addition, the acylsilanes (E/Z)- 7 undergo photoisomerization by δ-H abstraction furnishing the acylsilanes 29A + B . Flash vacuum thermolyses (FVT) of (E/Z)- 7 , (E/Z)- 8 , and (E)- 9 give rise to intramolecular reactions of the siloxycarbene intermediates. Thus, FVT (520°) of (E)- and (Z)- 7 selectively leads to the enol silyl ethers 32 and (E)- 33 , respectively, arising from carbene insertion into an allylic C–-H bond. FVT of (E/Z)- 8 (560°) and (E)- 9 (600°) affords the trienol silyl ethers 34A + B and the cyclic silyl ethers 37A + B , respectively, which are formed by CH insertion of the siloxycarbenes. As further products of (E)- 8 and (E)- 9 , the bicyclic enol ethers 35 and 36 are formed, presumably via siloxycarbene addition to the cyclohexene C?C bond.  相似文献   

3.
The Photoinduced Cleavage of Conjugated γ, δ-Epoxyenones: UV.-Irradiation of 5,6-Epoxy-3, 4-didehydro-5,6-dihydro-β-ionone On 1n, π*-excitation (λ ≥ 347 nm) in pentane or CClF2CFCl2 (E)- 1 is isomerized to the dihydrofurane (E/Z)- 2 as well to the ethers 3 and 5. Besides these products the isomeric cyclopropane derivative (E)- 4 and the acetal 6 are obtained in methanol. The detection of 6 indicates the formation of an intermediate ketoniumylide a which may give 6 by addition of methanol. ? On 1π, π*-excitation (λ=254 nm) in acetonitrile-d3, CClF2CFCl2 or pentane (E)- 1 yields almost exclusively (E)- 2. In methanol 6 is obtained in addition to (E/Z)- 2 , but no (E)- 4 and 5 is formed.  相似文献   

4.
On 1n,π*-excitation(λ > 347 nm), the diastereomeric methanoepoxyenones (E)- 6 undergo isomerization via C,O-cleavage of the oxirane leading to diastereomeric photoproducts ((E)- 5 →(E/Z)- 13 and 14 ; (E)- 6 →(E/Z)- 16 and 17 ). On 1π,π*-excitation (λ = 254 nm) of either (E)- 5 ) or (E- 6 the photoproducts 9, 10 and 11 are formed. By laser flash photolysis (λ = 265 nm) the ylide intermediate 3 was detected, with a lifetime of 10 μs in MeCN at ambient temperature. Stern-Volmer analysis of the ylide quenching by MeOH disclosed that compounds 9 and 10 , but not 11 , arise from the ylide intermediate e .  相似文献   

5.
On triplet excitation (λ > 280 nm, acetone), the epoxydiene (E)- 2 undergoes (E)/(Z)-isomerization exclusively, leading to the conformers (Z)- 2A and (Z)- 2B . On singlet excitation (λ = 254 nm), apart from (Z)- 2A + B , the cyclobutenes 3A + B are formed. However, the epoxydiene (E)- 2 does not undergo reactions leading to carbene and C,O-bond cleavage products, which are normally observed on singlet and triplet excitation, respectively, of the epoxydienes of the ionone series.  相似文献   

6.
The photolysis and thermolysis of the Cyclopropyl silyl ketones 3, 4 , and 5 are described. On n,π* excitation, the silyl ketones 3 and 4 undergo a Norrish-type-II reaction involving γ-H abstraction, cyclopropyl ring cleavage followed by retro-enolization to the acylsilanes 6 and (E/Z)- 12 , respectively. As a common product of 3 and 4 , the dihydrofuran 7 is formed via the alternative C(α)-C(β) cleavage of the cyclopropyl moiety. Compounds 6 , 7 , and (E/Z)- 12 are new types of acylsilane photoproducts. The irradiation of acylsilane 5 gave the analogous dihydrofuran 15 as the only product. On photolysis of 3 and 4 , products 8A + B and 13A + B , derived from a siloxy carbene intermediate, were found as well. On thermolysis of 3 and 4 , the acylsilanes 6 (80%), and (E)- 12 (33%) and (Z)- 12 (34%), respectively, are formed as the only products. Their formation may occur via a [1, 5] sigmatropic H-shift. The thermolysis of 5 gave the diene 16 whose formation can be explained by insertion of a siloxycarbene into the neighboring cyclopropane leading to the cyclobutene 28 as thermally unstable intermediate.  相似文献   

7.
The synthesis and photolyses of the epoxydiene (E)- 5 are described. On triplet excitation (λ > 280 nm, acetone), (E)- 5 undergoes initial cleavage of the C(5) O bond leading to the intermediate c. Presumably an H-shift ( c → e ) followed by the fragmentation of the 1,4-diradical e leads (via the enol 37 ) to the diketones (E)- 6 and (Z)- 12 . Alternatively cleavage of the C(6) C(7) bond of c furnishes the diradical intermediate d which reacts by recombination leading to (E)- 13A + B, 16 , and 17A + B , or by an H-shift to the enol intermediate 38 . The latter undergoes an aldol-type reaction to (E/Z)- 14A + B and (E/Z)- 15A + B , as well as a photochemical [2 + 2]-cycloaddition to 18 . On singlet excitation (λ = 254 nm, MeCN), (E)- 5 undergoes photocleavage to the carbene intermediates f and g . The vinyl carbene f reacts with the adjacent double bond furnishing the cyclopropene 22 as the main product. From the carbene intermediate g , compounds 23, 24 , and 25 arise by carbene insertion into the neighboring C C or C H bond. Furthermore, the diastereomer of the starting material, the epoxydiene (E)- 20 , is formed via the ylide intermediate h .  相似文献   

8.
Photochemistry of 5,6-Epoxydienes and of Conjugated 5,6-Epoxytrienes On singulet excitation (δ = 254 nm) the 5,6-epoxydiene 6 and the conjugated 5,6-epoxytrienes 7 and 8 exclusively give products arising from cleavage of the C, C-bond of the oxirane (cf. 6 → 9 , 10 , 11 ; 7 → (E)- 15 , 16 , 17 ; 8 → 18 (A+B) , 19 (A+B) , 20 , 21 ). The dihydrofuran compounds 11 and (E/Z)- 15 are formed by cyclization of a ketonium-ylide a and d , respectively. Photolysis of a gives the carbene b which yields the cyclopropene 9 , whereas d forms photochemically the carbenes f and g which yield the methano compounds 16 and 17 . The isomeric cyclopropene derivatives 20 and 21 are products of the intermediates h and i , respectively, which are formed by photolysis of the ylide e . The cyclopropene 21 isomerizes by intramolecular cycloadditions to 18 (A+B) and 19 (A+B) . - On triplet excitation (λ?LD nm; 280 nm; acetone) 6 undergoes cleavage of the C(5), O-bond and isomerizes to 12 and 14 . However, 7 is converted by cleavage of the C, C-bond of the oxirane to yield 15 . On treatment with BF3O(C2H5)2 6 gives 14 , whereas 7 yields 22 , and 8 forms 23 and 24 .  相似文献   

9.
Photochemistry of ε,ζ-Methano-α,γ-dienones and 7,8-Methano-1,3,5-trienes Irradiation of the δ-cyclopropyl-dienone (E)- 6 (λ ≥ 347 nm) gives (Z)- 6, 10 (1,5-sigmatropic H-shift), (E/Z)- 9 (electrocyclic process involving C(ε), C(ζ)-cleavage) and 11 (ring opening). The corresponding 6-cyclopropyl-triene (E)- 7 gives on singlet excitation (δ > 280 nm) 14 (1,5-sigmatropic H-shift) and, to a smaller extent, the bicyclo [3.2.0] heptenyl-dienes (E/Z)- 13 . However, on triplet excitation (λ ≥ 347 nm, benzophenone) (E)- 7 gives (E/Z)- 13 as the main products. On both 1π,π*- and 3π,π*-excitation, (Z)- 7 and 15 are formed in small amounts.  相似文献   

10.
On singlet excitation (λ = 254 nm), the epoxydiene (E)- 3 underwent (E)/(Z)-isomerization, electrocyclic ring closure of the diene side chain leading to the cyclobutenes 4A + B , and rearrangement to the cyclohexanones 5A + B . Compounds 5A + B were presumably formed in a series of processes including a 1,3-acyl shift of the homoconjugated ketone 8 , arising from (Z)- 3 by a 1,5-H-shift accompanied by cleavage of the C,O-bond of the oxirane.  相似文献   

11.
On triplet excitation (λ > 280 nm, acetone), the epoxydiene (E)- 5 undergoes initial cleavage of the C(5)? O bond of the oxirane and subsequent cleavage of the C(6)? C(7) bond leading to the diradical intermediate e which reacts by recombination furnishing the cyclic compounds (E/Z)- 6 , (E/Z)- 7,8 , and 9 . Alternatively, a H -shift leads to the aliphatic methyl-enol ether 10 which undergoes a photochemical [2+2]-cycloaddition to compounds 12 and 13 , the main products on triplet excitation of (E)- 5 . On singlet excitation (λ = 254 nm, MeCN), (E)- 5 undergoes cleavage to the carbene intermediates f and g . The vinyl carbene f reacts with the adjacent double bond furnishing the cyclopropene 14 as the main product. From the carbene intermediate g , the methyl-enol ether 15 arises by carbene insertion into the neighboring C? H bond. Furthermore, the diastereomer of the starting material, the epoxydiene (E)- 16 , and compounds 17A+B are formed via the ylide intermediate h . Finally, the cyclobutene 18 is the product of an electrocyclic reaction of the diene side chain.  相似文献   

12.
On π,π*-excitation of the epoxyenone (E)- 1 (λ = 254 nm, MeCN), in addition to the previously isolated compounds 2 – 9 , the new products 10 – 12 , derived from the ylide intermediate c were isolated. Further evidence for the ylide c was obtained by the rapid racemization of the optically active epoxyenone (?)-(E)- 1 .  相似文献   

13.
Vinylogous β-Cleavage of Enones: UV.-irradiation of 4-(3′,7′,7′-trimethyl-2′-oxabicyclo[3.2.0]hept-3′-ene-1′-yl)but-3-ene-2-on On 1π,π*-excitation (λ = 254 nm) in acetonitrile (E/Z)- 2 is converted into the isomers 4–9 and undergoes fragmentation yielding 10 ; in methanol (E/Z)- 2 gives 7–10 and is transformed into 11 by incorporation of the solvent. On 1π,π*-excitation (λ λ?347 nm; benzene-d6) (E)- 2 is isomerized into (Z)- 2 , which is converted into the isomers 3 and 4 by further irradiation. 1π,π*-Excitation (λ = 254 nm; acetonitrile) of 4 gives 6 and (E)- 9 , whereas UV.-irradiation (λ = 254 nm; acetonitrile-d3) of 5 yields (E)- 7 and 8 . On 1π,π*-excitation (λ = 254 nm; acetonitrile) of (E/Z)- 12 the compounds (E)- 14 and (E)- 15 are obtained.  相似文献   

14.
Photolysis of (E)-5-Isopropyl-6-methyl-5,6-epoxy-hept-3-en-2-on. This paper continues the series of investigations of the photochemistry of α, β-unsaturated γ, δ-epoxy-ketones, by examinating the photochemical behaviour of the aliphatic vinylogous epoxy-ketone 1 , the chromophore of which is structurally similar to that of γ, δ-epoxy-(E),β-ionone ( 44 ). On π, π*-excitation (λ = 254 nm) 1 isomerizes mainly to the enol-ether 2 and gives as minor products the isomeric dihydrofurane 3 , the 1,5-diketones 4 and 5 and the 1,3-diketone 6 . To a smaller extent, 1 also undergoes photofragmentation to the furane 7 , the allenyl-ketone 8 and the cyclopropenyl-ketone 9 . On n,π*-excitation (λ ≥ = 347 nm) 1 yields the photoisomers 3 , 4 , 5 and in traces the hydroxyallenyl-ketone 14 , but no fragmentation products. It is shown that on irradiation at λ ≥ = 254 nm the 1,5-diketone 4 isomerizes to 5 , 6 and 15 and photodecarbonylates to the β, γ-unsaturated ketone 16 . The isomers 3 , 4 and 5 , obtained both from n, π*- and π,π*-excitation, represent products of cleavage of the C(γ)? O-bond in 1 . The enolether 2 , on the other hand, formed only by π,π*-excitation, results from cleavage of the C(γ)? C(δ)-bond. Finally, the fragmentation products 7 , 8 and 9 , which could be detected only on π,π*-excitation, may arise from a common intermediate g ? h .  相似文献   

15.
The He(Ia) photoelectron (PE) spectra of the (E,E)-, (E,Z)- and (Z,Z)-isomers of the title compound have been recorded to obtain information about their conformation in the gas phase. For a valid correlation with the PE data of other dienes it is necessary to take the potentials V(φ) for internal rotation and the corresponding conformer population densities P (φ) into account, as well as the rather complicated way wy in which the π?1 ionization energy gap ΔI(φ) depends on the direct π-orbital interaction and the long-range ‘through-space’ interaction between the semi-localized methyl-group orbitals and the π-orbitals. These factors being taken into account, the mean twist angles, φ , compatible with the PE-spectroscopic results are φ (E,E) ≈? O° ± 30°, φ (E,Z) ≈? 80° or 110° within ± 15°, and φ (Z,Z) ≈? 85° to 105°. These results are in rough agreement with electron diffraction data by Traetteberg [15], other spectroscopic results and, for the (E, E)- and (Z,Z)-isomers, internal rotation potentials V(φ) previously calculated by Roth [17]. On the other hand the potential V (φ) proposed for the (E,Z)-isomer does not seem to be compatible with our findings.  相似文献   

16.
Photochemistry of Cyclic Acetals of the 1,3-Dioxa-4,6-cycloheptadiene Type UV.-irradiation (λ=254 nm) of 3 gives the isomers (E)- 5 (4%), (Z)- 5 (60%) and 6 (3%). On triplet sensitization (acetone; λ ≥ 280 nm) 3 is converted to (E)- 5 (3%), (Z)- 5 (7%) and 7 (9%). ? The 1π,π*-excitation (λ=254 nm) of 4 yields the isomers 2 (9%), 8 (10%), 9 (34%), 10 (20%) and 11 (3%). On thermolysis (200°) 4 gives 10 (87%) by a Claisen-rearrangement.  相似文献   

17.
The Photochemistry of Conjugated Epoxy-Inones: Photolysis of 5,6-Epoxy-5-isopropyl-6-methyl-hept-3-in-2-on This paper continues the series of investigations of the photochemistry of α,β-unsaturated γ,δ-epoxyketones by examining the hitherto unknown photochemical behaviour of α,β-acetylenic-γ,δ-epoxy-ketones. As model compound, the aliphatic epoxy-ynone 7 (thermally stable at 180°) was synthesized (Scheme 1). It can be converted with BF3O (C2H5)2 in good yields to the 1,5-diketone 8 , the yne-1,4-diketone 49 and in small amounts to the fluorhydrine 50 (Scheme 1). On n,π*- or π, π*-excitation, 7 shows mainly cleavage of the C (γ)-O-bond to give a diradical a (Scheme 11), whose ultimate fate is strongly solvent dependent. In acetonitrile a mainly rearranges to the 1,5-diketone 8 and, to a smaller extent, shows fragmentation to acetone and formation of polymers. Except for small amounts of the dimeric products 9A,9B and biphenyl, the same compounds are obtained in benzene. In cyclopentane, however, a gives only little of 8 , and mainly a plethora of compounds formed by a radical process like H-abstraction from solvent, incorporation of cyclopentylradicals, dimerization and fragmentation reactions (9A, 9B, 11–20) (Scheme 3). Irradiation of 7 in propan-2-ol or in dioxane yields products of analogous radical processes as well of photoreduction (Scheme 4). However, the analogous epoxyenone 32 gives mainly products of photoisomerizations without interference by the solvent [6]. On photochemical excitation in acetonitrile, the 1,5-diketone 8 shows unspecific decomposition, but in cyclopentane it yields the reduction products 12, 26A, 26B, 27, 28 plus cyclopentylcyclopentane (15) (Scheme 6).  相似文献   

18.
The Photochemistry of Open-Chained 2,6- or 2,7-Dien-Carbonyl Compounds On 1n, π*-excitation (λ > 347 nm) citral (5) and the methyl ketone 10 isomerize to compounds A (7, 19) and B (6, 20) , whereas the phenyl ketone 11 changes into the isomer 24 of type E. Evidence is given that the conversions to A and B may arise from the 3n, π*-state of the 2,6-diene-carbonyl compounds. On 1n, π*-excitation (λ = 254 nm) 5 and 10 yield the isomers A (7, 19) and D (18, 22) , but no products of type B. Furthermore, conversion of 10 to the isomer 21 of type C is observed. Selective 1n, π*-excitation (λ = 254 nm) as well as selective 1n, π*-excitation (λ > 347 nm) of the 2,7-diene-carbonyl compounds 12 and 13 give rise to isomerization to the compounds F (25, 28) , exclusively. The intramolecular [2 + 2]-photocycloadditions are shown to be triplet processes. UV.-irradiation (λ > 280 nm) of compounds F (25, 28) furnishes the isomeric products G (26, 29) which photoisomerize to oxetanes of type H (27, 30).  相似文献   

19.
The preparation and photolyses of the diepoxyenones (E)- 8 and (E)- 9 as well as the diepoxydiene (E)- 10 are described. On 1π,π*-excitation (λ = 254 nm), the diastereoisomeric diepoxyenones (E)- 8 and (E)- 9 undergo isomerization via the ylide intermediate f and the carbene intermediate g leading to the primary photoproducts 17A and 18–21 (Scheme 8). On 1n, π*-excitation (λ > 347 nm), (E)- 8 shows behaviour typical of epoxyenones undergoing C(γ), O-bond cleavage of the oxirane and isomerization to compounds 22 , (E/Z)- 23 and (E)- 24 (Scheme 10). On singlet excitation, the diepoxydiene (E)- 10 , is cleaved to the carbonyl ylide j and the carbenes 1 and m (Scheme 11). The carbonyl ylide j fragments via the dipolar intermediate k to the acetylenic dienone (E)- 31 . The carbene 1 , showing behaviour typical of vinyl carbenes, furnishes the cyclopropene 30 . The alternative carbene m , however, undergoes an insertion reaction into the neighboring oxirane C,C-bond leading to the proposed but not isolated oxetene 43 , which is further transformed to the products 33A _ B by an intramolecular cycloaddition.  相似文献   

20.
The wavelength dependence of the photolysis of 7-methyl-β-ionone ((E)- 1 ) was investigated. Irradiation of (E)- 1 with light of λ > 347 nm leads primarily to (E/Z)-isomerization followed by transformation to the tricyclic enol ether 3 as the only secondary photoproduct. On photolysis of (E)- 1 with light of shorter wavelength (λ > 280 nm or λ = 254 nm), however, a series of other products was formed (via a) photocyclization of the dienone chromophore (→ 5 ), (b) photo-enolization (→ 8 ), and (c) a 1,5-sigmatropic H-shift (→ (E/Z)- 7 ). For the structure elucidation of the new products, 7-[13C]methyl-β-ionone ((E)-[7-methyl-13C]- 1 ) was prepared and irradiated furnishing the corresponding 13C-labelled photoproducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号