首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perfluoromethyl-Element-Ligands. XXXV. Reactivity of Metallated Phosphanes and Arsanes of the Type π-C5H5(CO)3MER2 (M ? Cr, Mo, W; E ? P, As; R ? CF3, CN) The influence of the complex fragments π-C5H5(CO)3M (M ? Cr, Mo, W) on the basicity of the metallated phosphanes or arsanes π-C5H5(CO)3MER2 (E ? P, As; R ? CF3, CN) has been investigated by reactions with sulfur, methyliodide, fluorotrichloromethane, and W(CO)5THF, respectively. π-C5H5(CO)3ME(CF3)2 (E ? P: 1a–c ; E ? As: 2a–c ) react with sulfur only for E ? P to give the complexes π-C5H5(CO)3P(S)(CF3)2 ( 5a–c ) in good yield. The attempted thermal transformation of the phosphane sulfides to η2 coordinated (CF3)2P?S complexes proves unsuccessful. The reactions of 1a–c, 2a–c and π-C5H5(CO)3MP(CN)2 ( 3a–c ) with CH3I or CCl3F do not lead to onium salts, but to cleavage of the M–E bonds forming π-C5H5(CO)3MX (X ? I, Cl) and CH3ER2 and R2ECCl2F, respectively. The reactivity depends on ER2 and M: P(CF3)2 > P(CN)2 > As(CF3)2; Cr > Mo > W. Due to the low donor ability of the complexes 1a–c, 2a–c and 3a–c binuclear compounds π-C5H5(CO)3MER2W(CO)5 (E ? As, R ? CF3: 11a–c ; E ? P, R ? CN: 12a–c ; ER2?P(CN)Ph: 13a, b ) are obtained only with the highly reactive W(CO)5THF. In case of the (CF3)2P bridged derivatives spontaneous CO-elimination leads to the threemembered ring systems ( 10a–c ).  相似文献   

2.
3.
Perfluoromethyl Element Ligands. XLII Binuclear Complexes of the Type Mn2(CO)8E(CF3)2E′R (E = P, As; E′ = S, Se, Te): Synthesis and Structure Complexes of the type Mn2(CO)8E(CF3)2E′R, in which the groups E(CF3)2 and E′R act as bridging ligands, are prepared either by direct reactions of Mn2(CO)10 with (F3C)2EE′R (E = P, As; E′ = S, Se, Te) or by substitution of the iodine bridge in the representatives Mn2(CO)8 E(CF3)2I (E = P, As) with mercury compounds Hg(E′R)2. As a rule the binuclear systems contain four‐membered heterocycles (Mn2EE′). However, the reactions of Mn2(CO)10 with (F3C)2PE′P(CF3)2 (E′ = S, Se) yield five‐membered rings [Mn2P(E′P)]. The compounds have been characterized by spectroscopic (NMR, IR, MS), analytic (C, H) and X‐ray diffraction investigations. The pyramidal Mn2E′R fragment shows dynamic behaviour in solution via inversion between two identical structures.  相似文献   

4.
Perfluoromethyl Element Ligands. XXXII. Reactions of the Metal Hydrides π-C5H5(CO)3MH (M = Cr, Mo, W) with Diphosphanes [Ph2?nYnP]2 (Y = I, CN, SiMe3; n = 2, 1, 0) The reactions of π-C5H5(CO)3MH (M = Cr, Mo, W) ( 1a – c ) with the symmetric diphosphanes (Ph2P)2, [Ph(CN)P]2, [(CN)2P]2, and the cyclophosphane (PPh)5, respectively, occur under cleavage of the P? P bond. The reactivity decreases in the series The tendency to form binuclear complexes reflects the basicity of the metallated phosphanes π-C5H5(CO)3MPRR′ and increases in the order P(CN)2 < P(CN)Ph ? P(Ph)H < PPh2. Iodine containing diphosphanes [Ph(I)P? P(I)Ph and P2I4] undergo redox reactions with 1a – c , yielding π-C5H5(CO)3MI and unstable iodo-diphosphanes. No P? P bond cleavage occurs in the reaction of the silyl substituted diphosphanes [Ph(SiMe3)P]2 and [(Me3Si)2P]2 with 1a – c , but P? Si bond fission is the preferred reaction giving π-C5H5(CO)3MSiMe3.  相似文献   

5.
Phosphido- and Arsenido-bridged Dinuclear Complexes. Synthesis and Molecular Structure of (η5-C5H4R)2Zr{μ-P(SiMe3)2}2M(CO)4 (R = Me, M = Cr; R = H, M = Mo) and Synthesis of (η5-C5H5)2Zr{μ-As(SiMe3)2}2Cr(CO)4 The reaction of (η5-C5H4R)2Zr{E(SiMe3)2}2 with M(CO)4(NBD) (NBD = norbornadiene) yields the dinuclear phosphido- or arsenido-bridged complexes (η5-C5H4R)2Zr{μ-E(SiMe3)2}2M(CO)4 (R = Me, E = P, M = Cr ( 1 ); R = H, E = P, M = Mo ( 2 ); R = H, E = As, M = Cr ( 3 )). No formation of dinuclear complexes was observed in the reaction of (η5-C5H4Me)2Zr{P(SiMe3)2}2 with Ni(PEt3)4, Ni(CO)2(PPh3)2 or with NiCl2(PPh3)2 in the presence of Mg. Complexes 1 – 3 were characterised spectroscopically (i. r., n. m. r., m. s.), and X-ray structure investigations were carried out on 1 and 2 . The central four-membered ZrP2M ring is slightly puckered (dihedral angle between planes ZrP2/CrP2 14.7°, ZrP2/MoP2 14.2°). The Zr? P bond lengths are equivalent ( 1 : Zr? P1 2.654(4), Zr? P2 2.657(4) Å; 2 : Zr? P1 2.6711(9), Zr? P2 2.6585(7) Å), as are the M? P bond lengths (M = Cr ( 1 ): Cr? P1 2.513(4), Cr? P2 2.502(4) Å; M = Mo ( 2 ): Mo? P1 2.6263(7), Mo? P2 2.6311(10) Å). The long Zr ··· M distances of 3.414 Å (M = Cr ( 1 )) and 3.461 Å (M = Mo ( 2 )) indicate the absence of a metal-metal bond.  相似文献   

6.
W(CO)5L complexes (L = R2EER′2, R2EE′R; R, R′ = CH3, CF3; E = P, As; E′ = S, Se, Te) have been prepared by reaction of W(CO)5·THF with L at room temperature or by redistribution reaction of W(CO)5E2Me4 with E2(CF3)4 or E′2Me2 as well as by cleavage of E2(CF3)4 with W(CO)5EMe2H. The new compounds were characterized by analytical and spectroscopic (IR, NMR, MS) methods; by comparison with of the data of free and coordinated ligands the effects of complexation are studied.  相似文献   

7.
Transition Metal Substituted Acylphosphanes and Phosphaalkenes. 17. Synthesis and Structure of the μ-Isophosphaalkyne Complexes [(η5-C5H5)2(CO)2Fe2(μ-CO)(μ-C?PC6H2R3)] (R = Me, iPr, tBu) . Condensation of (η5-C5H5)2(CO)2Fe2(μ-CO)(μ-CSMe)}+SO3CF3? ( 6 ) with 2,4,6-R3C6H2PH(SiMe3) ( 7 ) ( a : R = Me, b : R = iPr, c : R = tBu) affords the complexes (η5-C5H5)2(CO)2Fe2(μ-CO)(η-C?PC6H2R3-2,4,6) ( 9 a–c ) with edge-bridging isophosphaalkyne ligands as confirmed by the x-ray structure analysis of 9 a .  相似文献   

8.
The preparation and properties of the complexes [M(π-C5H5){HC(NR)2}CO)2] (M = Mo, W; R = aryl or alkyl) are reported. The complex [Mo(π-C5H5){HC(N-p-tolyl)2}(CO)2] could be prepared by (a) reaction of MoCp(CO)3Cl with M′{HC(N-p-tolyl)2} (M′ = K, Ag or Cu); (b) irradiation of MoCp(CO)3Cl with HC(HN-p-tolyl)N-p-tolyl); and (c) reaction of [MoCp(CO)3]2 with M′{HC(N-p-tolyl)2} (M′ = Ag or Cu). The several routes to this complex give indications of the mechanisms of formation. The structure of these complexes and the bonding nature of the metal with the formamidino group is discussed on basis of the 1H and 13C NMR and IR spectra.Reaction of N,N′-dimethyl formamidine with MCp(CO)3Cl gave the complex [M(π-C5H5){HC(NMe)N(CO)Me}(CO)2], containing a carbonyl inserted between the metal and the formamidino group. Irradiation of this carbamoyl complex caused decarbonylation, yielding the complex [M(π-C5H5){HC(NMe)2}CO)2].  相似文献   

9.
Complexes of formula (η-C5H52Rh2{CF3C2CF3 · RNCO} have been prepared by three methods, from reactions between organic isocyanates and (η-C5H5)2Rh2(CO)(CF3C2CF3) or (η-C5H5)2Rh2(CO)2(CF3C2CF3); by treatment of (η-C5H5)2Rh2(CO)(CF3C2CF3) with organic azides; and by oxidation with Me3NO of the organic isocyanide in (η-C5H5)2Rh2(CO)(CNR)(CF3C2CF3). The crystal and molecular structure of the complex (η-C5H5)2Rh2{CF3C2CF3 · RNCO} with R = Ph has been determined from single crystal X-ray diffraction data. This reveals that the isocyanate has condensed with the hexafluorobut-2-yne to form an amide ligand of the form C(CF3)C(CF3)C(=O)N(R); this bridges the two rhodium atoms in a μ2η3-manner.  相似文献   

10.
11.
Compounds of the type π-C5H5NiPBu3SC(S)X (X = R, OR and NRH) are obtained from reactions between [π-C5H5Ni(PBu3)2]+Cl? and SC(S)X? in aqueous solution. Compounds such as π-C5H5NiPBu3SC(S)NRH are also obtained by reactions of π-C5H5NiPBu3SH with RNCS.Reactions of C6H5NCS with π-C5H5NiPBu3SEt or [π-C5H5NiPBu3S(CH2)n]2 (n = 1, 2 and 3) give π-C5H5NiPBu3[SC(NC6H5)SC2H5] or [π-C5H5NiPBu3 {SC(NC6H5)S(CH2)n}]2 respectively.Similar reactions of π-C5H5NiPBu3SH and RNCO given π-C5H5NiPBu3SC(O)NRH.Treatment of π-C5H5NiPBu3SC(S)R with HCl gives π-C5H5NiSC(S)R.  相似文献   

12.
Heterometallic Cluster Complexes of the Types Re2(μ-PR2)(CO)8(HgY) and ReMo(μ-PR2)(η5-C5H5)(CO)6(HgY) (R = Ph, Cy; Y = Cl, W(η5-C5H5)(CO)3) Dinuclear complexes Re2(μ-H)(μ-PR2)(CO)8 and ReMo(μ-H)(μ-PR2)(η5-C5H5)(CO)6 (R = phenyl, cyclohexyl) were deprotonated and reacted as anions with HgCl2 to compounds of the both types Re2(μ-PR2)(CO)8HgCl) and ReMo(μ-PR2)(η5-C5H5)(CO)6(HgCl). The heterometallic three-membered cluster complexes correspond to an isolobal exchange of a proton against a cationic HgCl+ group. For one of the products ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgCl) has been shown its conversion with NaW(η5-C5H5)(CO)3 to ReMo(μ-PCy2)(η5-C5H5)(HgW(η5-C5H5)(CO)3) under substitution of the chloro ligand, par example. The newly prepared compounds were characterized by means of IR, UV/VIS and 31P NMR data. A complete determination of the molecular structure by single crystal analyses was done in the case of Re2(μ-PCy2)(CO)8(HgCl) and of ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgCl) which both are dimer because of the presence of an asymmetric dichloro bridge, and of ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgW(η5-C5H5)(CO)3). The structural study illustrates through comparison the influence of various metal types on an interaction between centric and edge-bridged frontier orbitals in three-membered metal rings.  相似文献   

13.
There is activation of olefinic C? H bonds when (η-C5H5)2Rh2(CO)(CF3C2CF3) is treated with vinyl acetate or allyl cyanide. These reactions are initiated by exposure to sunlight. In the vinyl acetate reaction, each of the three vinylic C? H bonds can be broken, but there is strong preference for cleavage at the substituted carbon. The products formed in these reactions are bisalkenyl complexes of the type (η-C5H5)2Rh2{μ-C(CF3)C(CF3)H}(μ-CR?CR′R″), and all isomers have been thoroughly characterized by NMR analysis. Similar reactions with allylamine and other amines (NH2R, NHMe2) occur in the dark and proceed by N? H bond cleavage. Near-quantitative amounts of the products, (η-C5H5)Rh2{C(CF3)C(CF3)H}(C(O)NRR′) are isolated. Spectroscopic data indicate a bridging carboxamide ligand attached to the Rh? Rh bond from oxygen and nitrogen donor sites. It is proposed that coordination of O or N to rhodium has a strong influence on all of the reactions studied.  相似文献   

14.
The clusters [H2Os4M(CO)12eta6-C6H6)] (M=Os, Ru) may be deprotonated to generate anions [Os4M(CO)12eta6-C6H6)]2- which react with [M′eta6-C6H5R) (MeCN)3]2+(M=Os, Ru; R=H, Me) to give the bicapped tetrahedral clusters [Os4(CO)12MM′eta6-C6H5R)2]. Whereas [Os4(CO)12M2eta6-C6H6)2] (M=Os, Ru) have one Meta6-C6H6) unit in a site connected to three other metals, {3}, and one in a site connected to four other metals, {4}, [Os4(CO)12OsRueta6-C6H6)2] has the Rueta6-C6H6) unit in the {3} site irrespective of whether the Os or Ru anion is capped. Coupling of these anions with Au2dppm yields [Os4M(CO)12eta6-C6H6)(Au2dppm)] (M=Os, Ru), which have the arene ligand in the axial site of a trigonal bipyramid and the digold unit capping two faces. Reduction of [H2Os5(CO)15] with K/Ph2CO and coupling with [Rueta5-C5H5)(MeCN)3]2+yields the monoanion [Os5(CO)15Rueta5-C5H5)]? which reacts with [AuPPh3]+ generating [Os5(CO)15Rueta5-C5H5)(AuPPh3)] with the “Ru(C5H5)” unit in the terminal {3} site.  相似文献   

15.
Perfluoromethyl Element Ligands. XLI. [1] Compounds of the Type (F3C)2EE′R with Pseudohalide Character (E = P, As; E′ = S, Se, Te) Perfluoromethyl phosphorus and -arsenic compounds of the type (F3C)2EE′R (E = P, As; E′ = S, Se, Te; R = organic group) are prepared either by dismutation (metathesis) of E2(CF3)4 with (RE′)2 or by reaction of the iodine compounds (F3C)2EI with mercury(II) organosulfanides Hg(SR)2 and characterized by spectroscopic (1H, 19F, 31P-NMR; IR; MS) as well as analytical investigations (C, H).  相似文献   

16.
Alternative Ligands. XXVI. M(CO)4 L-Complexes (M ? Cr, Mo, W) of the Chelating Ligands Me2ESiMe2(CH2)2E′ Me2 (Me ? CH3; E ? P, As; E′ ? N, P, As) The reaction of M(CO)4NBD (NBD = norbornadiene; M ? Cr, Mo, W) with the ligands Me2ESiMe2(CH2)2E′ Me2 yields the chelate complexes (CO)4M[Me2ESiMe2]) for E,E′ ? P, As, but not for E and /or E′ ? N. The NSi group is not suited for coordination because of strong (p-d)π-interaction. In the case of the ligands with E ? P or As and E′ ? N chelate complexes can be detected in the reaction mixture, but isolable products are complexes with two ligands coordinated via the E donor group. The new compounds are characterized by analytical and spectroscopic (IR, NMR, MS) investigations. The spectroscopic data are also used to deduce the coordinating properties of the ligands. X-ray diffraction studies of the molybdenum complexes (CO)4Mo[Me2ESiMe2(CH2)2AsMe 2] (E ? P, As) in accord with the observed coordination effects show only small differences between SiE and CE donor functions. Attempts to use the ligands Me2ESiMe2(CH2)2AsMe2 (E ? P, As) for the preparation of Fe(CO)3L complexes result in the fission of the SiE bonds and the formation of the binuclear systems Fe2(CO)6(EMe2)2 (E ? P, As) together with the disilane derivative [Me2Si(CH2)2AsMe2]2.  相似文献   

17.
Perfluormethyl-Element-Ligands. XL. Chromium and Tungsten Pentacarbonyl Complexes of Bis(trifluoromethyl)phosphanes of the Type (F3C)2PX′ (X′ = H, F, Cl, Br, I, NEt2) The complexes M(CO)5P(CF3)2X′ (M = Cr, W; X′ = H, F, Cl, Br, I) are obtained in preparative amounts (yields between 15 and 42%) by reacting the ligands (F3C)2PX′ with the adducts “M(CO)5CH2Cl2”, photochemically generated from M(CO)6 in methylene chloride. The corresponding derivatives of the aminophosphane Et2NP(CF3)2 can be produced in good yields (60–75%) using the THF complexes M(CO)5THF as precursors. The spectroscopic data (MS, IR, NMR) of the new compounds are reported. The CO valence frequencies v(CO) and the coordination shifts Δδ prove the high π-acidity of the ligands (F3C)2PX′.  相似文献   

18.
Reactions of Cyclostibanes, (RSb)n [R = (Me3Si)2CH, n = 3; Me3CCH2, n = 4, 5] with the Transition Metal Carbonyl Complexes [W(CO)5(thf)], [CpxMn(CO)2(thf)], [CpxCr(CO)3]2, and [Co2(CO)8]; Cpx = MeC5H4 (RSb)3 [R = (Me3Si)2CH] reacts with [W(CO)5(thf)], [CpxMn(CO)2(thf)], or [Co2(CO)8] to give [(RSb)3W(CO)5] ( 1 ), [RSb{Mn(CO)2Cpx}2] ( 2 ) or [RSbCo(CO)3]2 ( 3 ). The reaction of (R′Sb)n (n = 4, 5; R′ = Me3CCH2) with [CpxCr(CO)3]2 leads to [(R′Sb)4{Cr(CO)2Cpx}2] ( 4 ); Cpx = MeC5H4, thf = Tetrahydrofuran.  相似文献   

19.
Transition Metal-substituted Acylphosphanes and Phosphaalkenes. 22. Insertions of Hexafluoroacetone into the PX-Bond of Metallophosphanes (η5-C5Me5)(CO)2M? PX2 (M = Fe, Ru; X = Me3Si, Cl). Structure Determination of (η5-C5Me5)(CO)2Fe? P(SiMe3)C(CF3)2(OSiMe3) Reaction of the metallophosphanes (η5-C5Me5)(CO)2M? P(SiMe3)2 ( 1a : M = Fe; 1b : M = Ru) with hexafluoroacetone (HFA) afforded the complexes (η5-C5Me5)(CO)2M? P(SiMe3)C(CF3)2(OSiMe3) ( 2a, b ). The attempted synthesis of a metallophosphaalkene from 2a by thermal elimination of hexamethyldisiloxane failed. The acid catalyzed hydrolysis of 2a afforded compound (η5-C5Me5) · (CO)2Fe? P(H)C(CF3)2(OSiMe3) ( 3 ). Hexafluoracetone and (η5-C5Me5)(CO)2Fe? PCl2 ( 4 ) under-went reaction to give the metallochlorophosphan (η5-C5Me5) · (CO)2Fe? P(Cl)? O? C(CF3)2Cl ( 5 ). Constitutions and configurations of the compounds ( 2–5 ) were established by elemental analyses and spectroscopic data (IR, 1H-, 13C, 19F-, 29Si-, 31P-NMR, MS). The molecular structure of 2a was determined by x-ray diffraction analysis.  相似文献   

20.
The electron impact induced mass spectra of [CF3SMn(CO)4]2, [CF3SeMn(CO)4]2, [CF3SFe(CO)3]2, [CF3SeFe(CO)3]2, CF3SeFe(CO)2C5H5 and CF3SCr(NO)2C5H5 are reported. These compounds exhibit weak molecular ion peaks and undergo preferential loss of CO or NO groups. The CO or NO free fragments suffer typical loss of ECF2(E = S, Se) with the simultaneous shift of F from carbon to metal. The ions [FFeC5H5]+ and [FCrC5H5]+ in the spectra of the cyclopentadienyl compounds prefer expulsion of π-cyclopentadienyls. The pyrolysis effects on the spectra of the compounds have been studied. An increase in temperature eases the expulsion of ECF2 groups from all the compounds and favors the formation of [Fe(C5H5)2]+ and [Cr(C5H5)2]+ in the cyclopentadienyl compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号