首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collisionally activated decompositions and ion-molecule reactions in a triple-quadrupole mass spectrometer are used to distinguish between cis- and trans-1,2-cyclopentanediol isomers. For ion kinetic energies varying from 5 eV to 15 eV (laboratory frame of reference), qualitative differences in the daughter ion spectra of [MH]+ are seen when N2 is employed as an inert collision gas. The cis ?1,2-cyclopentanediol isomer favors H2O elimination to give predominantly [MH- H2O]+. In the trans isomer, where H2O elimination is less likely to occur, the rearrangement ion [HOCH2CHOH]+ exists in significantly greater abundance. Ion-molecule reactions with NH3 under single-collision conditions and low ion kinetic energies can provide thermochemical as well as stereochemical information. For trans ?1,2-cyclopentanediol, the formation of [NH4]+ by proton transfer is an exothermic reaction with the maximum product ion intensity at ion kinetic energies approaching 0 eV. The ammonium adduct ion [M + NH4]+ is of greater intensity for the trans isomer. In the proton transfer reaction with the cis isomer, the formation of [NH4]+ is an endothermic process with a definite translational energy onset. From this measured threshold ion kinetic energy, the proton affinity of cis ?1,2-cyclopentanedioi was estimated to be 886 ± 10 kJ mol?1.  相似文献   

2.
Under Ammonia chemical Ionization conditions the source decompositions of [M + NH4]+ ions formed from epimeric tertiary steroid alchols 14 OHβ, 17OHα or 17 OHβ substituted at position 17 have been studied. They give rise to formation of [M + NH4? H2O]+ dentoed as [MHsH]+, [MsH? H2O]+, [MsH? NH3]+ and [MsH? NH3? H2O]+ ions. Stereochemical effects are observed in the ratios [MsH? H2O]+/[MsH? NH3]+. These effects are significant among metastable ions. In particular, only the [MsH]+ ions produced from trans-diol isomers lose a water molecule. The favoured loss of water can be accounted for by an SN2 mechanism in which the insertion of NH3 gives [MsH]+ with Walden inversion occurring during the ion-molecule reaction between [M + NH4]+ + NH3. The SN1 and SNi pathways have been rejected.  相似文献   

3.
The ammonia chemical ionization (CI/[NH4+]) mass spectra of a series of diastereomeric methyl and benzyl ethers derived from 3-hydroxy steroids (unsaturated in position 5 and saturated) have been studied. The adduct ions [M+NH4]+ and [MH]+ and the substitution product ions [M+NH4? ROH]+ (thereafter called [MsH]+) are characterized by an inversion in their relative stabilites in relation to their initial configuration. [M+NH4]α+ and [MH]α+ formed from the α-Δ5-steroid isomers are stabilized by the presence of a hydrogen bond which is not possible for the β-isomers. This stereochemical effect has also been observed in the mass analysed ion kinetic energy (MIKE) spectra of [M+NH4]+ and [MH]+. The MIKE spectra of [MsH]+ indicate that those issued from the β-isomers are more stable than the one originating from the α-isomers. This behavior is also observed in the first field free region (HV scan spectra) for [MH]+, [MsH]+ and [M+NH4]+ which are precursors of the ethylenic carbocations (base peak in the conventional CI/[NH4]+ spectra). Mechanisms, such as SN1 and SNi, have been ruled out for the formation of [MsH]+, but instead the data support an SN2 mechanism during the ion-molecule reaction between [M+NH4]+ and NH3.  相似文献   

4.
Summary The reaction of aqueous solutions of 3d metal salts with bis(hydroxylammonium) bicyclo[2.2.1]-hept-5-en-endo-2,3-cis-dicarboxylate in a 12 mole ratio yielded complexes of the general formula [MnL2(NH3OH)2]·nH2O and [FeIIIL2(NH3OH)H2O]·H2O, where MII=Mn, Fe, Co, Ni, Cu and Zn, and L=bicyclo[2.2.1]-hept-5-en-endo-2,3-cis-dicarboxylate dianion.The compounds were characterized by i.r. spectra and thermal analysis. For all complexes, an octahedral structure is proposed which is formed bytrans coordination of two bidentate (OO) ligands (L) and two NH3OH+ cations attrans positions, coordinated also through oxygen atoms; and similarlytrans positions for NH3OH+ and H2O in the case of the FeIII complex.  相似文献   

5.
Ammonia chemical ionization (CI) mass spectra of various open-chain, cyclic and unsaturated C5- to C10-alcohols were obtained at source temperatures ranging from 60° to 250°C. The reactivity of the ammonia adduct ion MNH and its fragmentation channels are characteristic for substrate structure. Although strongly temperature-dependent, the spectra give nevertheless information on the OH-group environment as well as on the C-skeleton at any source temperature. Primary, secondary and tertiary alcohols as well as allylic and simple olefinic alcohols can be distinguished by their spectra, which show ammonium adduct ions [MNH4]+, adduct dehydrogenation ions [MNH4-H2], ammonium substitution ions [MNH4-H2O]+ and [M-OH]+-ions as the main characteristic peaks. Moreover, konfigurational assignments of stereoisomeric alcohols are possible for larger substrate-size and source-temperature ranges than with isobutane CI mass spectrometry. Homologous M NH-ions show molecular-size control of fragmentation and linear MNH-ions are less stable than branched isomers due to incomplete energy randomization.  相似文献   

6.
Summary The reaction of [CrCl3(DMF)3] with C-meso-5, 12-dimethyl-1, 4, 8, 11-tetra-azacyclotetradecane(LM) in DMF gives a mixture ofcis-[CrLMCl2]Cl (ca. 90%) andtrans-[CrLMCl2]Cl (ca. 10%). These complexes are readily separated, as thecis-isomer is insoluble in warm methanol while thetrans-isomer is soluble. Using the dichlorocomplexes as precursors it has been possible to prepare a range ofcis-[CrLMX2]+ complexes (X=Br, NO 3 , N 3 , NCS and X2=bidentate oxalate) and alsotrans-[CrLMX2]+ complexes (X=Br, H2O or NCS). The spectroscopic properties and detailed stereochemistry of the complexes are discussed.The aquation and base hydrolysis kinetics ofcis- andtrans-[CrLMCl2]+ have been studied at 25° C. Base hydrolysis of thecis-complex is extremely rapid with KOH =1.46×105 dm3 mol–1 at 25° C. This unusual reactivity appears to be associated with thetrans II stereochemistry of thesec-NH centres of the macrocycle. Base hydrolysis of thetrans complex with thetrans III chiral nitrogen stereochemistry is quite normal with kOH =1.1 dm3 mol–1 s–1 at 25° C.  相似文献   

7.
Breakdown graphs have been constructed from charge exchange data for the epimeric 2-methyl-, 3-methyl- and 4-methyl-cyclohexanols. Although the breakdown graphs for epimeric pairs are essentially identical above ~12 eV recombination energy, significant differences are observed for the epimeric 2-methyl- and 4-methyl-cyclohexanols at low internal energies. For the 2-methylcyclohexanols the ratio ([M? H2O]/[M])cis/([M? H2O]/[M])trans is 3.2 in the [C6F6] charge exchange mass spectra. This is attributed to both energetic and conformational effects which favour the stereospecific cis-1,4-H2O elimination for the cis epimer. The breakdown graph for trans-4-methylcyclohexanol shows a sharp peak in the abundance of the [M? H2O] ion at ~10 eV recombination energy which is absent from the breakdown graph for the cis epimer. This peak is attributed to the stereospecific cis-1,4-elimination of water from the molecular ion of the trans isomer; the reaction appears to have a low critical energy but a very unfavourable frequency factor, and alternative modes of water loss common to both epimers are observed at higher energies. As a result, in the [C6F6] charge exchange mass spectra the ([M? H2O]/[M])trans/([M? H2O]/[M])cis ratio is ~24, compared to the value of 13 observed in the 70 eV EI mass spectra. No differences are observed in either the metastable ion abundances or the associated kinetic energy releases for epimeric molecules.  相似文献   

8.
Summary Rate constants are reported and discussed for several substitutions of inorganic complexes in ethylene carbonate (1,3-dioxolan-2-one) + water and in propylene carbonate (4-methyl-1,3-dioxolan-2-one) + water solvent mixtures. The reactions include aquation ofcis- and oftrans-[Co(en)2Cl2]+, aquation oftrans-[Cr(OH2)4Cl2]+, bromide substitution at [Pd(Et4dien)Cl]+, thiourea substitution atcis-[Pt(4-NCpy)2Cl2], and aquation and cyanide attack at [Fe(X-phen)3]2+ cations.  相似文献   

9.
Ab initio UMP2 and UQCISD(T) calculations, with 6-311G** basis sets, were performed for the titled reactions. The results show that the reactions have two product channels: NH2+ HNCO?NH3+NCO (1) and NH2+HNCO?N2H3+CO (2), where reaction (1) is a hydrogen abstraction reaction via an H-bonded complex (HBC), lowering the energy by 32.48 kJ/mol relative to reactants. The calculated QCISD(T)//MP2(full) energy barrier is 29.04 kJ/mol, which is in excellent accordance with the experimental value of 29.09 kJ/mol. In the range of reaction temperature 2300–2700 K, transition theory rate constant for reaction (1) is 1.68×1011–3.29×1011 mL·mol-1·s-1, which is close to the experimental one of 5.0×1011mL·mol-1·s-1or less. However, reaction (2) is a stepwise reaction proceeding via two orientation modes,cis andtrans, and the energy barriers for the rate-control step at our best calculations are 92.79 kJ/mol (forcis-mode) and 147.43 kJ/mol (fortrans-mode), respectively, which is much higher than reaction (1). So reaction (1) is the main channel for the titled reaction.  相似文献   

10.
This work demonstrates sign reversal of large circularly polarized luminescence (CPL) signal based on the hinge‐like twisting motion of a bidentate ligand, 3,3‐bis(diphenylphosphoryl)‐2,2‐bipyridine (BIPYPO), in a cistrans isomerization of chiral europium(III) complexes. X‐ray diffraction analysis revealed that twisting motion of BIPYPO provides scis and strans geometries of a chiral EuIII complex containing either tris[3‐(trifluoromethylhydroxymethylene)‐(+)‐camphorate] (D ‐ 1 ) or tris[3‐(heptafluoropropylhydroxymethylene)‐(+)‐camphorate] (D ‐ 2 ). The scis EuIII complexes show eight‐coordinate geometry around the EuIII ion, in which the chelate between the phosphoryl oxygen and the EuIII ion forces the scis geometry of BIPYPO. In contrast, the phosphorus–nitrogen interaction provides a conformational lock for the strans geometry of the BIPYPO ligand, inducing a quasi‐seven‐coordinate EuIII complex. The difference in coordination geometry causes the sign change of the CPL signals between the scis and strans isomers, whereby the scis and strans isomers of EuIII complexes exhibit the positive and negative CPL signals, respectively, for the 5D07F1 transition. The proportion of the strans‐D ‐ 1 against scis‐D ‐ 1 increases upon changing the solvent from [D3]acetonitrile to [D6]acetone, inducing a sign change of the CPL signals. The complexes D ‐ 1 and D ‐ 2 show a biexponential decay with two different lifetimes, suggesting two emitting species, that is, the scis and strans isomers of EuIII complexes. In both cases, the proportions of the longer lifetime components (τ1) decrease and instead the shorter lifetime components (τ2) increase upon changing the solvent from [D3]acetonitrile to [D6]acetone.  相似文献   

11.
Summary Rate constants are reported for mercury(II)-catalysed aquation of thetrans-[Rh(en)2Cl2]+, [Cr(NH3)5Cl]2+, andcis-[Cr(NH3)4(OH2)Cl]2+ cations in water and in methanol-, ethanol-, and acetonitrile-water solvent mixtures. In the case oftrans-[Rh(en)2Cl2]+, the dependence of rate constants on mercury(II) concentration indicates reaction through a binuclear (Rh-Cl-Hg bridged) intermediate. The dependence of the equilibrium constant for the formation of this intermediate and of its rate constant for dissociation (loss of HgCl+) on solvent composition have been established. With the aid of measured solubilities, published ancillary thermodynamic data, and suitable extrathermodynamic assumptions, the observed reactivity trends for these mercury(II)-catalysed aquations are dissected into initial state and transition state components. The reactivity patterns for these three complexes are compared with those for mercury(II)-catalysed aquation of other chloro-transition metal complexes, particularlycis-[Rh(en)2Cl2]+, [Co(NH3)5Cl]2+, and [ReCl6]2–.  相似文献   

12.
The interactions of [Au(cis-DACH)Cl2]Cl and [Au(cis-DACH)2]Cl3 [where cis-DACH is cis-1,2-diaminocyclohexane] with enriched KCN were carried out in CD3OD and D2O, respectively. The reaction pathways of these complexes were studied by 1H, 13C, 15N NMR, UV spectrophotometry, and electrochemistry. The kinetic data for the reaction of cyanide with [Au(cis-DACH)2]Cl3 are k = 18 M?1s?1, ?H = 11 kJ M?1, ?S = ?185 JK?1 M?1, and Ea = 13 kJ M?1 with square wave voltammetric (SWV) peak +1.35 V, whereas the kinetic data for the reaction of cyanide ion with [Au(cis-DACH)Cl2]Cl are k = 148 M?1s?1, ?H = 39 kJM?1, ?S = ?80 JK-1 M?1, and Ea = 42 kJM?1 along with SWV peak +0.82 V, indicating much higher reactivity of [Au(cis-DACH)Cl2]Cl toward cyanide than [Au(cis-DACH)2]Cl3. The interaction of these complexes with potassium cyanide resulted in an unstable [Au(13CN)4]? species which readily underwent reductive elimination reaction to generate [Au(13CN)2]? and cyanogen.  相似文献   

13.
Isomerically pure nitrile complexes cis‐[Ru(dppm)2Cl(NCR)]+ ( 2 a – d ) are formed upon chloride displacement from cis‐[Ru(dppm)2Cl2] ( 1 ) or, alternatively, by ligand substitution from the acetonitrile complex 2 a . This latter approach does also allow for the introduction of pyridine ( 3 a , b ), heptamethyldisilazane ( 4 ) or isonitrile ligands ( 5 ). All complexes are obtained as the configurationally stable cis‐isomers. Only cis‐[Ru(dppm)2Cl(CNtBu)]+ slowly isomerizes to the trans from. The solid state structures of the CH3CN, C2H5CN and the trans‐tBuNC complexes were established by X‐ray crystallography. Electrochemical investigations of the nitrile complexes 2 a – d show in addition to a chemically reversible one‐electron oxidation an irrversible reduction step. In CH2Cl2 solution, cis‐ and trans‐[Ru(dppm)2Cl2] have been identified as the final products of the electrochemically induced reaction sequence.  相似文献   

14.
Summary The preparation of the series ofcis- andtrans-[Co(NH3)4(RNH2)Cl]2+ complexes (withcis, R = Me orn-Pr andtrans, R = Me, Et,n-Pr,n-Bu ori-Bu) is described. The u.v-visible spectra indicate a decrease of the ligand field on increasing chain length. Infrared spectra show an enhanced Co-Cl bond strength compared to the pentaammine. Partial molar volumes of the complex cations do not reveal steric compression. From proton exchange studies in D2O it follows that [Co(NH3)5Cl]2+ and thecis- andtrans-[Co(NH3)4-(CH3NH2)C1]2+ complexes exchange the amine protons on the grouptrans to the chloro faster than those on thecis. A coordinated methylamine group exchanges its amine protons slower than a corresponding NH3 group in the parent pentaammine, but the methyl introduction accelerates the exchange of the other NH3 groups. The aquation of thetrans-alkylamine complexes (studied at 52° C) is acceleratedca. 10 times compared to the parent pentaammine, irrespective of the nature of the alkyl group. Thecis complexes do not show this acceleration of aquation. In base hydrolysis (studied at 25° C) thecis complexes are the most reactive (a factor 20 over the parent ion). Thecis/trans product ratio in base hydrolysis and the competition ratio in the presence of azide ions were calculated from the 500 MHz1H n.m.r. spectra, which display distinctly different alkyl resonances for each individual complex. Thecis ions react under stereochemical retention of configuration; thetrans compounds give 10±1%trans tocis rearrangement. The ionic strength (4 mol dm–3) and the pH do not affect this result. The same product ratio is obtained in methanol-water and DMSO-water mixtures. Ammoniation in liquid ammonia gives the same ratios as in base hydrolysis, base-catalyzed solvolysis in neat methylamine gives stereochemical retention for both thecis- andtrans-methylamine ion. The product competition ratio (Co-N3)/(Co-OH2) for thecis compounds and the bulkier amines (R =n- andi-Bu), 15–25% at 1 mol dm–3N 3 , isca. twice that of thetrans compounds and the pentaammine. The results are interpreted in the classical conjugate base mechanism, and discussed in the context of current ideas about stereochemistry of base hydrolysis.Prof. C. R. Píriz Mac-Coll from Uruguay is a guest at the Free University of Amsterdam.  相似文献   

15.
The ammonia desorption chemical ionization (NH3-DCI) mass spectra of peracetylated gentiobiose (1) and two isotopically labelled gentiobioses (2 and 3) were examined. Compound 2 is labelled with trideuteroacetyl groups in the non-reducing moiety and 3 with trideuteroacetyl groups in the reducing moiety. It is shown that the [M + NH4 – 42]+ ion is not formed direct from [M + NH4]+ by loss of ketene but appears to be formed by way of a nucleophilic acyl substitution reaction resulting in a neutral species which complexes with NH4+. The disaccharides undergo cleavage at either side of the glycosidic oxygen joining the two sugar residues, a process which is accompanied by addition of H or CH3CO to afford neutral species which complex with NH4+. The structures of the ions resulting from H transfer have been inferred by comparison of their mass-analysed ion kinetic energy (MIKE) spectra with MIKE spectra of the [M + NH4]+ ions of compounds of established structure. A ring fragmentation reaction of 1, 2 and 3 is reported.  相似文献   

16.
Studies of the stoichiometry and kinetics of the reaction between hydroxylamine and iodine, previously studied in media below pH 3, have been extended to pH 5.5. The stoichiometry over the pH range 3.4–5.5 is 2NH2OH + 2I2 = N2O + 4I? + H2O + 4H+. Since the reaction is first-order in [I2] + [I3?], the specific rate law, k0, is k0 = (k1 + k2/[H+]) {[NH3OH+]0/(1 + Kp[H+])} {1/(1 + KI[I?])}, where [NH3OH+]0 is total initial hydroxylamine concentration, and k1, k2, Kp, and KI are (6.5 ± 0.6) × 105 M?1 s?1, (5.0 ± 0.5) s?1, 1 × 106 M?1, and 725 M?1, respectively. A mechanism taking into account unprotonated hydroxylamine (NH2OH) and molecular iodine (I2) as reactive species, with intermediates NH2OI2?, HNO, NH2O, and I2?, is proposed.  相似文献   

17.
In this contribution we investigated the ion complexation of Bühl's cryptand, dodeka(ethylene)octamine by quantum chemical methods (B3LYP/LANL2DZp). This cryptand is an isomer of a well‐known Lehn‐type cryptand [TriPip222]. The ion selectivity was determined based on the energetic criteria derived by model reactions starting from solvated metal ions and empty dodeka(ethylene)octamine, and by comparing the M–N bond length in [M ? dodeka(ethylene)octamine]m+ and [M(NH3)6]m+. We calculated that Bühl's cryptand will complex best Na+ followed by Li+ as alkaline cations and Ca2+ followed by Mg2+ as alkaline earth metal ions. Based on this data we conclude that Bühl's cryptand offers a smaller cavity to nest ions than the Lehn‐type [TriPip222].  相似文献   

18.
Sodium thiosulfate has been utilized as a rescuing agent for relief of the toxic effects of cisplatin and carboplatin. In this work, we characterized the kinetics of reactions of the trans-dichloro-platinum(IV) complexes cis-[Pt(NH3)2Cl4], ormaplatin [Pt(dach)Cl4] and trans-[PtCl2(CN)4]2? (anticancer prodrugs and a model compound) with thiosulfate at biologically important pH. An overall second-order rate law was established for the reduction of trans-[PtCl2(CN)4]2? by thiosulfate, and varying the pH from 4.45 to 7.90 had virtually no influence on the reaction rate. In the reactions of thiosulfate with cis-[Pt(NH3)2Cl4] and with [Pt(dach)Cl4], the kinetic traces displayed a fast reduction step followed by a slow substitution involving the intermediate Pt(II) complexes. The reduction step also followed second-order kinetics. Reductions of cis-[Pt(NH3)2Cl4] and [Pt(dach)Cl4] by thiosulfate proceeded with similar rates, presumably due to their similar configurations, whereas the reduction of trans-[PtCl2(CN)4]2? was about 1,000 times faster. A common reduction mechanism is suggested, and the transition state for the rate-determining step has been delineated. The activation parameters are consistent with transfer of Cl+ from the platinum(IV) center to the attacking thiosulfate in the rate-determining step.  相似文献   

19.
The surfactantCo(III) complexes of the type cis-[Co(en)2AX]2+ (A?=?Tetradecylamine, X?=?Cl?,?Br?) were synthesised from corresponding dihalogeno complexes by the ligand substitution method. The critical micelle concentration (CMC) values of these surfactant complexes in aqueous solution were obtained from conductance measurements. The kinetics and mechanism of iron(II) reduction of surfactantCo(III) complexes, cis-[Co(en)2(C14H29NH2)Cl](ClO4)2 and cis-[Co(en)2(C14H29NH2)Br] (ClO4)2 ions were studied spectrophotometrically in an aqueous acid medium by following the disappearance of Co(III) using an excess of the reductant under pseudo-first-order conditions: [Fe(II)]?=?0.25?mol?dm?3, [H+]?=?0.1?mol?dm?3, [μ]?=?1.0?mol?dm?3 ionic strength in a nitrogen atmosphere at 303, 308 and 313?K. The reaction was found to be of second order and showed acid independence in the range [H+]?=?0.05–0.25?mol?dm?3. The second-order rate constant increased with surfactant–Co(III) concentration and the presence of aggregation of the complex itself altered the reaction rate. The effects of [Fe(II)], [H+] and [μ] on the rate were determined. Activation and thermodynamic parameters were computed. It is suggested that the reaction of [Fe(II)] with Co(III) complex proceeds by an inner-sphere mechanism.  相似文献   

20.
Synthesis and characterization of seven ruthenium(II) and ruthenium(III) complexes of sulfoxide with 2-aminobenzothiazole are reported. Three different formulations exist: [cis,cis,cis-RuCl2(SO)2(2-abtz)2] and [trans,trans,trans-RuCl2(SO)2(2-abtz)2] and [trans-RuCl4(SO)(2-abtz)] ? [X]+ (where SO?=?dimethyl sulfoxide (dmso) or tetramethylenesulfoxide (tmso); 2-abtz?=?2-aminobenzothiazole and [X]+?=?[H(abtz)]+, [Na+]. These complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility, FTIR, 1H NMR, 13C{1H} NMR and electronic spectroscopy. Some of the complexes were screened for their antibacterial activity and are found to be potent against the gram negative bacteria Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号