首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

2.
Ligand Replacement in the Crystal Lattice of (PyH)2[Ta6Br12]Cl6 Solid (PyH)2[Ta6Br12i]Cl6a transforms exothermically at 210°C. In this way the Cla atoms outside of the complex are going instead of Bri into the inside position; e.g. [Ta6Br12]Cl62? → [Ta6Br6Cl6]Br62?. After each transformation Cl is brought in the outside position of the complex by recrystallization from a solution containing HCl. One gets in the following transformation step [Ta6Br3Cl9]4+ and finally in the third step [Ta6Br1.5Cl10.5]4+. Both formula are empirical formula. They consist of [Ta6Br6Cl6]4+ and [Ta6Br2Cl10]4+; and [Ta6Br6Cl6]4+, [Ta6Br2Cl10]4+ and [Ta6Cl12]4+, respectively. This result is in agreement with the theory.  相似文献   

3.
Some Reactions with [Mo6Cl8]Cl4 The reaction of [Mo6Cl8]Cl4 with different chemical agents has been investigated: The methoxylation depends on the CH3O? concentration in CH3OH. The reaction with HF leads to a partial fluorinated [Mo6Cl8] product. With NH4F (NH4)2[Mo6Cl8]F6 in formed, the hydrolysis of which leads to [Mo6Cl8]F3(OH) · 2.5 H2O. This compound can be decomposed thermically into [Mo6Cl8]O2. [Mo6Br8]F62? on hydrolysis leads to [Mo6Br8]F3(OH) · 5 H2O. With CsF Cs2[Mo6Cl8]F6 is formed, which by hydrolysis is transformed into [Mo6Cl8]F3(OH) · 2.5 H2O and possibly to [Mo6Cl8]F4 · xH2O(?). In reaction of [Mo6Cl8]Cl4 with H2SO4 one gets [Mo6Cl8](SO4)2. Salts e. g. [(C6H5)4As]2[Mo6Cl8](OC6F5)6 and adducts e. g. [Mo6Cl8](OC6F5)4 · 2 HMPA are prepared. The compounds have been characterized by X-ray powder-diagramms and by IR-spectra.  相似文献   

4.
The Oxochlorotantalates (PPh4)2[Ta2OCl9]2 · 2 CH2Cl2, (PPh4)2[Ta2OCl10] · 2 CH3CN, and (K-18-crown-6)4[Ta4O6Cl12] · 12 CH2Cl2 (K-18-crown-6)4[Ta4O6Cl12] · 12 CH2Cl2 was obtained from a reaction of tantalum pentachloride, K2S5 and 18-crwon-6 in dichlormethane. According to its crystal structure analysis it is tetragonal (space group I 4 2d) and contains [Ta4O6Cl12]4– ions that have an adamantane-like Ta4O6 skeleton. Each K+ ion is coordinated by the oxygen atoms of the crown ether molecule from one side and with three Cl atoms of one [Ta4O6Cl12]4– ion from the opposite side. (PPh4)2[Ta2OCl10] · 2 CH3CN was a product from PPh4Cl and TaCl5 in acetonitrile in the presence of Na2S4. Its crystals are monoclinic (space group P21/c) and contain centrosymmetric [Ta2OCl10]2– ions having a linear Ta–O–Ta grouping with short bonds (Ta–O 189 pm). TaCl5 and H2S formed a solid substance (TaSCl3) from which a small amount of (PPh4)2[Ta2OCl9]2 · 2 CH2Cl2 was obtained by the reaction with PPh4Cl in CH2Cl2. The anions in the monoclinic crystals (space group P21/n) consist of two Ta2OCl9 units which are joined by chloro bridges; each Ta2OCl9 unit has a nearly linear Ta–O–Ta group with differing bond lengths (179 and 202 pm). The oxygen in the compounds probably was introduced by traces of water in the crown ether, acetonitrile or H2S, respectively.  相似文献   

5.
《Solid State Sciences》1999,1(7-8):483-495
A series of paramagnetic clusters of the composition [(Ta6Cl12)Cl(H2O)5][HgX4] · 9H2)O (X = Cl, Br, I) has been prepared by the reaction of [Ta6Cl12]3+ methanol-water solutions with HgX2 and NaX halides. The structure of [(Ta6Cl12)Cl(H2O)5][HgBr4] · 9H2O has been solved by X-ray diffraction in the cubic space group Fd 3m. Crystal data: a = 20.036(2) Å, V = 8043.0(1) Å3, Z = 8, R = 0.048 (Rw = 0.051). The structure is composed of an octahedral [(Ta6Cl12)Cl(H2O)5]2+ cluster cation, tetrahedral [HgBr4]2− anion and crystal water molecules. The 2mm symmetry of the octahedron is reduced by the statistical distribution of the five water molecules, O(1), and chlorine, Cl(2), at the terminal coordination sites. Thus, the distances Ta-O(1) and Ta-Cl(2) are averaged to the value of 2.32(2) Å. The Ta-Ta and Ta-Cl(1) bond distances are 2.911(1) Å and 2.440(3) Å, respectively, whereas the Hg-Br bond distance is 2.564(3) Å. The cluster [(Ta6Cl12)Cl(H2O)5][HgBr4] · 9H2O is semiconducting with two levels governing conductivity with respective activation energies, Eal = 0.24 eV and Ea2 = 0.17 eV.  相似文献   

6.
New compounds of the general formula A4[Nb6Cl12(NCS)6](H2O)4 (A = K, Rb, NH4) were synthesized from Nb6Cl14 and ASCN in aqueous solutions. X-ray structure refinements were performed on single-crystal data of the three compounds. They are isotypic and crystallize with the space group P1 (Z = 1) and the lattice parameters: a = 877.9(3) pm, b = 1176.6(3) pm, c = 1187.0(3) pm, α = 114.29(1)°, β = 98.96(2)°, γ = 100.91(2)° for K4[Nb6Cl12(NCS)6](H2O)4 ( 1 ); a = 887.6(3) pm, b = 1184.0(4) pm, c = 1195.4(4) pm, α = 114.95(2)°, β = 98.84(2)°, γ = 101.31(2)° for Rb4[Nb6Cl12(NCS)6](H2O)4 ( 2 ) and a = 886.0(4) pm, b = 1181.1(6) pm, c = 1183.9(6) pm, α = 114.49(2)°, β = 99.48(3)°, γ = 101.53(1)° for (NH4)4[Nb6Cl12(NCS)6](H2O)4 ( 3 ). Each centrosymmetric [Nb6Cl12(NCS)6]4? ion of the isotypic compounds contains six terminal thiocyanate groups being bound to the corners of the octahedral niobium cluster through the nitrogen atoms (dNb? N = 221.5(6)–224.3(6) pm, bond angles Nb? N? C 168.6(5)–176.4(6)°). The [Nb6Cl12(NCS)6]4? ions are linked via A? S and A? Cl interactions with the A cations. Half of the cations occur to be disordered along two crystallographic sites.  相似文献   

7.
Specific molecular recognition of γ-cyclodextrin (γ-CD) by the cationic hexanuclear niobium [Nb6Cl12(H2O)6]2+ cluster complex in aqueous solutions results in a 1:1 supramolecular assembly {[Nb6Cl12(H2O)6]@γ-CD}2+. NMR spectroscopy, isothermal titration calorimetry (ITC), and ESI-MS were used to study the interaction between the inorganic cluster and the organic macrocycle. Such molecular association affects the biological activity of [Nb6Cl12(H2O)6]2+, decreasing its cytotoxicity despite enhanced cellular uptake. The 1:1 stoichiometry is maintained in solution over a large window of the reagents’ ratio, but crystallization by slow evaporation produces a 1:2 host–guest complex [Nb6Cl12(H2O)6@(γ-CD)2]Cl2 ⋅ 20 H2O featuring the cluster encapsulated between two molecules of γ-CD. The 1:2 complex was characterized by XRD, elemental analysis, IR spectroscopy, and thermogravimetric analysis (TGA). Quantum chemical calculations were performed to model host–guest interaction.  相似文献   

8.
Direct reaction of stoichiometric amounts of KBr, tantalum and bromine at 720 °C, followed by extraction and crystallization gives Ta6Br14 · 7H2O (1) . This compound slowly aquates into [(Ta6Br12)(H2O)6]2+, which crystallized as mixed Cs+/Br ( 2 ), Cl ( 3 ) and SO42– ( 4 ) salts. In Bu4NBr melt, 1 undergoes oxidation into (Bu4N)2[(Ta6Br12)Br6] ( 5 ). Reaction of 1 with dimethylsulfoxide also induces oxidation of the { Ta6Br12} 2+ core into { Ta6Br12} 4+, and the corresponding complex [(Ta6Br12)(dmso)2Cl4] · iPrOH · 4.8H2O ( 6 ) was isolated and structurally characterized. Molecular and crystal structures for 2 – 6 were determined.  相似文献   

9.
The compounds A4[Nb6Cl12]Cl6 (A ? Na, K, Cs), K4[Nb6Br12]Br6 and A4[Ta6Cl12]Cl6 (A ? Na, K, Cs) are prepared. The chemical equations for formation and decomposition are taken into consideration. The complexes [Nb6Br12]2+ and [Ta6Cl12]2+, unstable in the binary systems, are stabilized in the ternary compounds. The compounds are isotypic with the known K4[Nb6Cl12]Cl6. For some of them lattice constants and molecular volumes are communicated.  相似文献   

10.
Compounds consisting of both cluster cations and cluster anions of the composition [(M6X12)(EtOH)6][(Mo6Cl8)Cl4X2] · n EtOH · m Et2O (M = Nb, Ta; X = Cl, Br) have been prepared by the reaction of (M6X12)X2 · 6 EtOH with (Mo6Cl8)Cl4. IR data are given for three compounds. The structures of [(Nb6Cl12)(EtOH)6][(Mo6Cl8)Cl6] · 3 EtOH · 3 Et2O 1 and [(Ta6Cl12)(EtOH)6][(Mo6Cl8)Cl6] · 6 EtOH 2 have been solved in the triclinic space group P1 (No. 2). Crystal data: 1 , a = 10.641(2) Å, b = 13.947(2) Å, c = 15.460(3) Å, α = 65.71(2)°, β = 73.61(2)°, γ = 85.11(2)°, V = 2005.1(8) Å3 and Z = 1; 2 , a = 11.218(2) Å, b = 12.723(3) Å, c = 14.134(3) Å, α = 108.06(2)°, β = 101.13(2)°, γ = 91.18(2)°, V = 1874.8(7) Å3 and Z = 1. Both structures are built of octahedral [(M6Cl12)(EtOH)6]2+ cluster cations and [(Mo6Cl8)Cl6]2– cluster anions, forming distorted CsCl structure types. The Nb–Nb and Ta–Ta bond lengths of 2.904 Å and 2.872 Å (mean values), respectively, are rather short, indicating weak M–O bonds. All O atoms of coordinated EtOH molecules are involved in H bridges. The Mo–Mo distances of 2.603 Å and 2.609 Å (on average) are characteristic for the [(Mo6Cl8)Cl6]2– anion, but there is a clear correlation between the number of hydrogen bridges to the terminal Cl and the corresponding Mo–Cl distances.  相似文献   

11.
Two Chloride Silicates of Yttrium: Y3Cl[SiO4]2 and Y6Cl10[Si4O12] The chloride‐poor yttrium(III) chloride silicate Y3Cl[SiO4]2 crystallizes orthorhombically (a = 685.84(4), b = 1775.23(14), c = 618.65(4) pm; Z = 4) in space group Pnma. Single crystals are obtained by the reaction of Y2O3, YCl3 and SiO2 in the stoichiometric ratio 4 : 1 : 6 with ten times the molar amount of YCl3 as flux in evacuated silica tubes (7 d, 1000 °C) as colorless, strongly light‐reflecting platelets, insensitive to air and water. The crystal structure contains isolated orthosilicate units [SiO4]4– and comprises cationic layers {(Y2)Cl}2+ which are alternatingly piled parallel (010) with anionic double layers {(Y1)2[SiO4]2}2–. Both crystallographic different Y3+ cations exhibit coordination numbers of eight. Y1 is surrounded by one Cl and 7 O2– anions as a distorted trigonal dodecahedron, whereas the coordination polyhedra around Y2 show the shape of bicapped trigonal prisms consisting of 2 Cl and 6 O2– anions. The chloride‐rich chloride silicate Y6Cl10[Si4O12] crystallizes monoclinically (a = 1061,46(8), b = 1030,91(6), c = 1156,15(9) pm, β = 103,279(8)°; Z = 2) in space group C2/m. By the reaction of Y2O3, YCl3 and SiO2 in 2 : 5 : 6‐molar ratio with the double amount of YCl3 as flux in evacuated silica tubes (7 d, 850 °C), colorless, air‐ and water‐resistant, brittle single crystals emerge as pseudo‐octagonal columns. Here also a layered structure parallel (001) with distinguished cationic double‐layers {(Y2)5Cl9}6+ and anionic layers {(Y1)Cl[Si4O12]}6– is present. The latter ones contain discrete cyclo‐tetrasilicate units [Si4O12]8– of four cyclically corner‐linked [SiO4] tetrahedra in all‐ecliptical arrangement. The coordination sphere around (Y1)3+ (CN = 8) has the shape of a slightly distorted hexagonal bipyramid comprising 2 Cl and 6 O2– anions. The 5 Cl and 2 O2– anions building the coordination polyhedra around (Y2)3+ (CN = 7) form a strongly distorted pentagonal bipyramid.  相似文献   

12.
The electronic ground state of [Nb6Cl12]4+ is calculated using a one-center-model. One obtains the observed diamagnetic character.  相似文献   

13.
The Lanthanum Dodecahydro‐closo‐Dodecaborate Hydrate [La(H2O)9]2[B12H12]3·15 H2O and its Oxonium‐Chloride Derivative [La(H2O)9](H3O)Cl2[B12H12]·H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic La2O3 and after isothermic evaporation colourless, face‐rich single crystals of a water‐rich lanthanum(III) dodecahydro‐closo‐dodecaborate hydrate [La(H2O)9]2[B12H12]3·15 H2O are isolated. The compound crystallizes in the trigonal system with the centrosymmetric space group (a = 1189.95(2), c = 7313.27(9) pm, c/a = 6.146; Z = 6; measuring temperature: 100 K). The crystal structure of [La(H2O)9]2[B12H12]3·15 H2O can be characterized by two of each other independent, one into another posed motives of lattice components. The [B12H12]2− anions (d(B–B) = 177–179 pm; d(B–H) = 105–116 pm) are arranged according to the samarium structure, while the La3+ cations are arranged according to the copper structure. The lanthanum cations are coordinated in first sphere by nine oxygen atoms from water molecules in form of a threecapped trigonal prism (d(La–O) = 251–262 pm). A coordinative influence of the [B12H12]2− anions on La3+ has not been determined. Since “zeolitic” water of hydratation is also present, obviously the classical H–Oδ–···H–O‐hydrogen bonds play a significant role in the stabilization of the crystal structure. During the conversion of an aqueous solution of (H3O)2[B12H12] with lanthanum trichloride an anion‐mixed salt with the composition [La(H2O)9](H3O)Cl2[B12H12]·H2O is obtained. The compound crystallizes in the hexagonal system with the non‐centrosymmetric space group (a = 808.84(3), c = 2064.51(8) pm, c/a = 2.552; Z = 2; measuring temperature: 293 K). The crystal structure can be characterized as a layer‐like structure, in which [B12H12]2− anions and H3O+ cations alternate with layers of [La(H2O)9]3+ cations (d(La–O) = 252–260 pm) and Cl anions along [001]. The [B12H12]2− (d(B–B) = 176–179 pm; d(B–H) = 104–113 pm) and Cl anions exhibit no coordinative influence on La3+. Hydrogen bonds are formed between the H3O+ cations and [B12H12]2− anions, also between the water molecules of [La(H2O)9]3+ and Cl anions, which contribute to the stabilization of the crystal structure.  相似文献   

14.
By reaction of elemental tellurium, tellurium(IV) chloride, tantalum(V) chloride and tantalum(V) oxychloride in the ionic liquid [BMIM]Cl ([BMIM]Cl:1‐Butyl‐3‐methylimidazolium chloride),[Te8]2[Ta4O4Cl16] is obtained in the form of lucent black crystals. The title compound consists of infinite [Te–Te–(Te6)]n2+ chains (Te–Te: 264.9(1)–284.3(1) pm) and isolated [Ta4O4Cl16]4– anions. The [Te–Te–(Te6)]n2+ chains are interconnected to form a two‐dimensional tellurium network (Te–Te: 335.9 pm). Due to this interaction the [Te–Te–(Te6)]n2+ chains in [Te8]2[Ta4O4Cl16] show an arrangement that differs significantly from known polycationic [Te8]n2+ chains. The two‐dimensional tellurium network is finally separated by tetrameric, corner‐sharing oxidochloridotantalate anions [(TaO2/2Cl4/1)4]4– that are firstly observed. The composition of [Te8]2[Ta4O4Cl16] is confirmed by EDX analysis; its optical band gap is estimated to 1.1–1.2 eV via UV/Vis spectroscopy.  相似文献   

15.
A method for the preparation of new solvated clusters of the composition [M6Br12(H2O)6][HgBr2X2] · 12H2O (M?Nb, Ta; X?Cl, Br, I) is given. The cubic crystals of [Nb6Br12(H2O)6][HgBr4] · 12H2O 1 and [Ta6Br12(H2O)6][HgBr4] · 12H2O 2 were characterized by the X-ray structure analysis: 1 : cubic, space group Fd3 m, a = 21.0072(6) Å, Z = 8, R = 0.051 (Rw = 0.066); 2 : cubic, space group Fd3 m, a = 20.9698(1) Å, Z = 8, R = 0.038 (Rw = 0.050). 1 and 2 contain octahedral cluster cation [M6Br12(H2O)6]2+ and tetrahedrally arranged [HgBr4]2? anion. The M? M bond distances are 2.949(1) Å for 1 and 2.9000(8) Å for 2 . The Hg? Br bond distances in [HgBr4]2? anion are 2.614(2) Å in 1 and 2.622(2) Å in 2 . The crystal packing patterns of the isostructural clusters 1 and 2 involve the three-dimensional hydrogen bond network; the crystalline water molecules act as donors of hydrogen to the bromine atoms of the cluster and [HgBr4]2? units, whereas the coordinated water molecules form hydrogen bonds to the crystalline water molecules. [Nb6Br12(H2O)6][HgBr4] · 12H2O is diamagnetic and semiconducting with the activation energy, Ea = 0.20 eV.  相似文献   

16.
Six new hexanuclear niobium cluster compounds of the general formula [Nb6Cl14L4] · x(solvent molecule) [L = neutral O or N donor ligand, x = 0–2.5; pyrimidine ( 1 ), 1‐methyl imidazole ( 2 ), isobutyronitrile ( 3 ), isopropyl alcohol ( 4 ), triphenylphosphine oxide ( 5 ), dimethyl sulfoxide ( 6 )] were prepared. The syntheses were carried out by dehydration of the precursor [Nb6Cl14(H2O)4] · 4H2O with different water scavangers, like acetic anhydride, trimethyl acetic anhydride and diethylcarbonate in the presence of the corresponding neutral ligand. The structures are determined by single‐crystal X‐ray diffraction. The specific bonding situations of the ligands to the [Nb6Cl12]2+ cluster cores are compared and discussed. The phenomenon of the observed M6 distortion is explained and interpreted based on the matrix effect and the terminal ligand effect. In addition, other interactions between the cluster units, such as hydrogen bonding and π–π stacking are discussed.  相似文献   

17.
Adducts of cucurbit[6]uril with Ca2+ and trinuclear cluster chloroaquacomplexes (H9O4)2(H7O3)2[(Ca(H2O)5)2(C36H36N24O12)]Cl8·0.67H2O (1) and [(Ca(H2O)5)2(C36H36N24O12)]× [Mo3O2S2Cl6(H2O)3]2·13H2O (2) are obtained and structurally characterized. The structures of both compounds contain polymeric [Ca(H2O) n ]22 CB[6]∞ cations that form infinite columns; the space between them is filled with Cls- (1) and [Mo3O2S2Cl6(H2O)3]2s- (2). A new (H7O3)2(H5O2)× [Mo3S4Cl6.25Br0.25(H2O)2](C36H36N24O12)·CH2Cl2·6H2O complex (3) is also obtained and structurally characterized.  相似文献   

18.
Two isomers (cis and trans) of [Nb6Cl9O3(NCS)6]5– niobium cluster complexes characterized by an ordered arrangement of oxygen and chlorine ligands over the 12 inner positions in the cluster core were prepared by reaction of Cs2LaNb6Cl15O3 and ScNb6Cl13O3 solid state compounds with aqueous solution of potassium thiocyanate. The cis and trans isomers (idealized C 2 v and D 3 symmetry, respectively) crystallize with counter cations and water molecules to form the following salts: Cs4.75K0.25[Nb6Cl9O3(NCS)6] · 5.5H2O (1) and Cs2.5K2.5[Nb6Cl9O3(NCS)6] · 2H2O (2), respectively. The trans isomer is ordered in structure 1 (s.g.: C2/c), while in the structure of 2 (s.g.: Pnma), the cis isomer is randomly disordered over two positions that correspond one to each other by a mirror plane. Interestingly, the treatment of thiocyanato complexes cis and trans with hydrochloric acid led to substitution of (NCS) ligands by Cl and to formation of soluble complexes [Nb6Cl9O3Cl6]5–. The cesium salt of trans-[Nb6Cl9O3Cl6]5– was crystallized as Cs5[Nb6Cl15O3] · CsCl · 7H2O (3) and structurally characterized. Indeed, the formation of soluble [Nb6Cl9O3(NCS)6]5– intermediates is a necessary step towards the formation of soluble anions.  相似文献   

19.
Bis(disulfido)bridged NbIV cluster oxalate complexes [Nb2(S2)2(C2O4)4]4– were prepared by ligand substitution reaction from the aqua ion [Nb2(μ‐S2)2(H2O)8]4+ and isolated as K4[Nb2(S2)2(C2O4)4] · 6 H2O ( 1 ), (NH4)6[Nb2(S2)2(C2O4)4](C2O4) ( 2 ) and Cs4[Nb2(S2)2(C2O4)4] · 4 H2O ( 3 ). The crystal structures of 1 and 2 were determined. The crystals of 1 belong to the space group P1, a = 720.94(7) pm, b = 983.64(10) pm, c = 1071.45(10) pm, α = 109.812(1)°, β = 91.586(2)°, γ = 105.257(2)°. The crystals of 2 are monoclinic, space group C2/c, a = 1567.9(2) pm, b = 1906.6(3) pm, c = 3000.9(4) pm, β = 95.502(2)°. The packing in 2 shows alternating layers of cluster anions and of ammonium/uncoordinated oxalates perpendicular to the [1 0 1] direction. Vibration spectra, electrochemistry and thermogravimetric properties of the complexes are also discussed.  相似文献   

20.
A well chloride?water cluster [Cl6(H2O)8]6? in the complex [Cu3(DMAP)12Cl6?8H2O] (DMAP = N,N’-dimethyl p-aminopyridine) has been investigated structurally in the solid state. The chloride-water cluster [Cl6(H2O)8]6? is stabilized and orderly arranged by hydrogen bonds which display high symmetry. Six hosts [Cu(DMAP)4]2+ cationic form a cage-like aggregation, and chloride-water [Cl6(H2O)8]6? cluster located in the cage. Cl? anion play an important role to connect cubane-like (H2O)8 water cluster forming [Cl6(H2O)8]6? cluster, and on the other hand, to connect cage-like [Cu(DMAP)4]2+ cationic aggregation by means of ionic electrostatic interaction and long-range coordinate bond interaction. The formation of such a cluster anion may be available for insight into the nature of hydration of chloride in H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号