首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Jandera  Pavel  Sta&#;kov&#;  Magda 《Chromatographia》2015,78(13):853-859

Organic polymer monolithic columns of different lengths have been prepared in 320 µm i.d. fused silica capillary by in situ radical polymerization of N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium betaine as a zwitterionic functional monomer and bisphenol A glycerolate dimethacrylate as a crosslinking monomer in the presence of porogenic solvents. The zwitterionic monolithic columns are intended for separations of polar compounds in hydrophilic interaction chromatography (HILIC). The effects of the capillary column length, from 115 to 175 mm, on separation efficiency, were investigated under HILIC conditions, using 95:5 acetonitrile in water as the mobile phase. The extra-column contributions to band broadening significantly decrease the efficiency (apparent height equivalent to a theoretical plate), especially for weakly retained samples, and increase with diminishing column length. The experimental height equivalents of theoretical plate, HETP, were corrected for the extra-column contributions, which were determined for a series of columns by extrapolation to zero column length. On a 175 mm long column, the column efficiency, HETP = 16.5 μm, measured at the optimum linear flow velocity of 0.5 mm s−1, improved to HETP = 5 µm, after correction for extra-column contributions. For more strongly retained small polar compounds, interactions with zwitterionic groups and (or) water adsorbed inside the pores decrease the column efficiency at higher flow rates.

  相似文献   

2.
A chiral stationary phase prepared by bonding L -valine-t-butylamide to XE-60 has been coated on glass and metal capillaries. The performances of the chiral glass and metal columns were equivalent to those of commercial fused silica capillary columns. The thermal stability of the glass column was examined up to 280°C. It was found that no appreciable change in separation factor (α value) was observed up to 230°C. The α values gradually decreased between 240 and 260°C, and enantiomer separation was no longer achieved at 280°C. It was concluded that the allowable upper limit temperature of the chiral stationary phase is between 230 and 240°C in the isothermal mode, and ca 260°C in temperature-programmed mode.  相似文献   

3.
A model mixture of light hydrocarbons was used to study the separation capacity of monolithic capillary columns based on divinylbenzene with five different carrier gases, including helium, hydrogen, nitrogen, carbon dioxide, and nitrous oxide. The results were correlated with the previously obtained data on monolithic columns based on silica gel. It was shown that the influence of the nature of the carrier gas was weaker than for silica gel columns; the polymeric columns studied behaved similarly to hollow capillary columns with polymeric stationary phases and exhibited an efficiency gain of 20–30% along the series He < H2 < N2 ~ N2O < CO2. Based on the minimum HETP (~15 μm) obtained for the investigated monolithic columns under optimum conditions with N2O or CO2 as a carrier gas, the conclusion was drawn that the creation of divinylbenzene-based monolithic capillary columns with a high specific efficiency was possible.  相似文献   

4.
Six chiral diamide stationary phases (CSPs), namely N-(3-carbobenzoxypropionyl)-L-Val-tert-butylamide (CSP-1), N-undecenoyl-L-Val-S-α-phenylethylamide (CSP-2), N-undecenoyl-L-Val-R-α-phenylethylamide (CSP-3), OV-225-L-Val-tert-butylamide (CSP-4), XE-60-L-Val-tert-butylamide (CSP-5) and polycyanoethyl vinyl siloxane-L-Val-tert-butylamide (CSP-6), were inves-tigated and CSP-6 was crosslinked within narrow bore (70 μm) fused silica capillary columns. Theseparation of amino acid enantiomers on this narrow bore column by gas chromatography (GC) isillustrated.  相似文献   

5.
A generalized preparation procedure of open tubular (OT) molecule imprinted polymer (MIP) columns is proposed for a number of templates with acidic functionality such as profen drugs and others. The template (S‐enantiomer) was mixed with methacrylic acid, ethylene glycol dimethacrylate and 4‐styrenesulfonic acid, dissolved in a porogen mixture of ACN/2‐propanol (9/1), and incubated in a pretreated and silanized fused silica capillary by the thermal non‐covalent polymerization procedure. The whole preparation procedure was exactly the same for all the MIP capillaries except for the selection of template. Nevertheless, the morphologies of the MIP layers were markedly variant depending upon the choice of template. The separation efficiency of each OT‐MIP column for chiral separation of R‐ and S‐enantiomers was examined and tuned to obtain the best separation efficiency by changing the chromatographic parameters such as eluent composition and pH. Different optimized conditions were obtained for different OT‐MIP columns. Nevertheless, a unified eluent could be used to obtain still quite satisfactory results. Non‐chiral separation of the MIP columns were also examined in the unified eluent with two sets of test mixtures, that is, a mixture of alkylbenzenes and a mixture of small polar solutes. The chiral and non‐chiral separation of this study resulted in very good separation efficiencies. This work is the very first study for the generalization of preparation of OT‐MIP columns for a number of templates.  相似文献   

6.
A simple and economical CE method has been developed for the analysis of four model basic proteins by employing N‐methyl‐2‐pyrrolidonium methyl sulfonate ionic liquid (IL) as the dynamic coating material based on the interaction of both between electrostatic attraction and hydrogen bond, and between the organic cations of IL and the inner surface of bare fused‐silica capillary. The N‐methyl‐2‐pyrrolidonium‐based IL modified capillary not only generated a stable suppressed electroosmotic flow, but also effectively eliminated the wall adsorption of proteins. Several important parameters such as the IL concentration, pH values, and concentrations of the background electrolyte were optimized to improve the separation of basic proteins. Consequently, under the optimum separation conditions, a satisfied separation of basic proteins including lysozyme, cytochrome c, ribonuclease A, and α‐chymotrypsinogen A with theoretical plates ranging from 2.09 × 105 to 4.48 × 105 plates/m had been accomplished within 15 min. The proposed method first illustrated the effect of hydrogen bond between coating material and inner capillary surface on the coating, which should be a new strategy to design and select more effective coating materials to form more stable coatings in CE.  相似文献   

7.
The potentialities of new ionic liquids (ILs) based on choline were evaluated as an electrophoretic medium in capillary electrophoresis for the analysis of alkaline and alkaline earth cations (Li+, K+, Na+, Cs+, Mg2+, Ba2+, Ca2+, and Sr2+) with indirect UV detection. Two types of capillaries were tested: an untreated fused silica and fused silica coated with a film of polyvinylalcohol. The coated capillary proved to be the best adapted for the metal ions studied. Moreover, it appeared that the nature of the ionic liquid anion influenced the baseline stability, and the bis(trifluoromethylsulfonyl) imide (NTf2 ) anion seemed to be the most efficient. These preliminary studies led us to synthesize a new ionic liquid, 2-hydroxy-N,N,N-trimethyl-1-phenylethanaminium NTf2 (phenylcholine NTf2). This liquid was able to act as the running electrolyte and probe, generating the background signal in indirect UV light and consequently simplifying the electrophoretic medium. Excellent baseline stability, good reproducibility, as well as good sensitivity of detection were obtained with this new ionic liquid. Thus, 510,000 plates/meter for Li+ with 40 mM IL were successfully obtained. The optimal concentration of IL was 20 mM with a detection limit ranging from 28 μg L−1 for Li+ to 1,000 μg L−1 for Cs+. This method (phenylcholine NTf2 with polyvinylalcohol capillary) was applied to analyze different commercial source and mineral waters. Finally, the potentiality of this ionic liquid in nonaqueous capillary electrophoresis was explored. The use of phenylcholine NTf2 with a fused silica capillary, in pure methanol medium and in the presence of acetic acid, made it possible to obtain separation selectivity different from that obtained in aqueous medium.  相似文献   

8.
The deactivation of fused silica capillary columns with a laboratory-made poly-diphenylvinylmethylhydrosiloxane copolymer has been investigated. The deactivation obtained at different temperatures and reaction times is characterized with a dual column capillary GC system [1]. In parallel, the effect of the silylation temperatures and reaction times on the nature, the structure, and the chemical properties of the deactivation layer has also been studied by solid-state 29Si NMR spoctroscopy. A fumed silica, Cab-O-Sil M5, was used as a model substrate for these spectroscopic studies. The deactivated fused silica capillaries show an excellent thermal stability (up to 400°C), a high resistance to solvolysis, and a minimal interaction to various critical test components. A good wettability of the fused silica capillary columns deactivated with this reagent was confirmed by successful subsequent coating with polysiloxanes with different phenyl contents.  相似文献   

9.
A series of well‐defined triblock copolymers, poly(N, N‐dimethylacrylamide)‐block‐poly(ethylene oxide)‐block‐poly(N, N‐dimethylacrylamide) (PDMA‐b‐PEO‐b‐PDMA) synthesized by atom transfer radical polymerization, were used as physical coatings for protein separation. A comparative study of EOF showed that the triblock copolymer presented good capillary coating ability and EOF efficient suppression. The effects of the Mr of PDMA block in PDMA‐b‐PEO‐b‐PDMA triblock copolymer and buffer pH on the separation of basic protein for CE were investigated. Moreover, the influence of the copolymer structure on separation of basic protein was studied by comparing the performance of PDMA‐b‐PEO‐b‐PDMA triblock copolymer with PEO‐b‐PDMA diblock copolymer. Furthermore, the triblock copolymer coating showed higher separation efficiency and better migration time repeatability than fused‐silica capillary when used in protein mixture separation and milk powder samples separation, respectively. The results demonstrated that the triblock copolymer coatings would have a wide application in the field of protein separation.  相似文献   

10.
Monolithic capillary columns have been prepared in fused‐silica capillaries by radical co‐polymerization of ethylene dimethacrylate and butyl methacrylate in the presence of porogen solvent mixtures containing various concentration ratios of 1‐propanol, 1,4‐butanediol, and water with azobisisobutyronitrile as the initiator of the polymerization reaction. The through pores in organic polymer monolithic columns can be characterized by “equivalent permeability particle size”, and the mesopores with stagnant mobile phase by “equivalent dispersion particle size”. Increasing the concentration of propanol in the polymerization mixture diminishes the pore volume and size in the monolithic media and improves the column efficiency, at a cost of decreasing permeability. Organic polymer monolithic capillary columns show similar retention behaviour to packed alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have different methylene selectivities. Higher concentrations of propanol in the polymerization mixture increase the lipophilic character of the monolithic stationary phases. Best efficiencies and separation selectivities were found for monolithic columns prepared using 62–64% propanol in the porogen solvent mixture. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra‐column contributions.  相似文献   

11.
The use of high-temperature-stable, medium polarity glass capillary columns coated with immobilized PS-090 (a 20 % diphenyl-substituted, CH3O-terminated polydimethylsiloxane) has made it possible to analyze routinely, and with good separation efficiency, high molecular weight compounds such as triglycerides and free base porphyrins. Cold on-column injection was used throughout this work to avoid discrimination against involatile compounds, and disposable (fused silica) retention gaps were used to protect the column against contamination with involatile material. On-column injection into narrow bore glass columns was achieved by using glass-to-silica connections to attach wider bore (0.2 mm i.d.) deactivated fused silica tubing to the columns.  相似文献   

12.
The electro‐osmotic flow, a significant factor in capillary electrophoretic separations, is very sensitive to small changes in structure and surface roughness of the inner surface of fused silica capillary. Besides a number of negative effects, the electro‐osmotic flow can also have a positive effect on the separation. An example could be fused silica capillaries with homogenous surface roughness along their entire separation length as produced by etching with supercritical water. Different strains of methicillin‐resistant and methicillin‐susceptible Staphylococcus aureus were separated on that type of capillaries. In the present study, fused‐silica capillaries with a gradient of surface roughness were prepared and their basic behavior was studied in capillary zone electrophoresis with UV‐visible detection. First the influence of the electro‐osmotic flow on the peak shape of a marker of electro‐osmotic flow, thiourea, has been discussed. An antifungal agent, hydrophobic amphotericin B, and a protein marker, albumin, have been used as model analytes. A significant narrowing of the detected zones of the examined analytes was achieved in supercritical‐water‐treated capillaries as compared to the electrophoretic separation in smooth capillaries. Minimum detectable amounts of 5 ng/mL amphotericin B and 5 μg/mL albumin were reached with this method.  相似文献   

13.
Tan YL  Quanci JF 《Talanta》1985,32(7):577-578
A packed-column gas-chromatograph/mass-spectrometer (GC/MS), Hewlett-Packard 5982, was modified to accommodate fused silica capillary columns. The original GC/MS interface and chemical-ionization sample-line in the ion-source were changed to allow the end of a fused silica capillary column to enter the ion-chamber directly. For chemical-ionization operation, the reagent gas was brought into the MS through the direct-insertion probe port. The calibration compound was introduced through the electron-impact sample-inlet, which simplified the operation. The modified system yields higher sensitivity and more efficient separation, as well as simpler operation, without sacrificing any original instrument functions.  相似文献   

14.
A new mixed crosslinking agent composed of dicumyl peroxide and tetra(methylvinyl)cyclotetrasiloxane was used to prepare fused silica capillary columns with in situ crosslinked stationary phases including PEG-20M, SE-54, and OV-1. These columns proved to have good thermostability and inertness. As examples of potential applications a mixture of isomers of nitrotoluene and dinitrotoluene, and pyrolyzates of polystyrene were separated by using these columns.  相似文献   

15.
A new sol?Cgel protocol was designed and optimized to produce titanium-dioxide-based columns within confined geometries such as monolithic capillary columns and porous-layer open-tubular columns. A surface pre-treatment of the capillary enabled an efficient anchorage of the monolith to the silica capillary wall during the synthesis. The monolith was further synthesized from a solution containing titanium n-propoxide, hydrochloric acid, N-methylformamide, water, and poly(ethylene oxide) as pore template. The chromatographic application of capillary titania-based columns was demonstrated with the separation of a set of phosphorylated nucleotides as probe molecules using aqueous normal-phase liquid chromatography conditions. Capillary titania monoliths offered a compromise between the high permeability and the important loading capacity needed to potentially achieve miniaturized sample preparations. The specificity of the miniaturized titania monolithic support is illustrated with the specific enrichment of 5??-adenosine mono-phosphate. The monolithic column offered a ten times higher loading capacity of 5??-adenosine mono-phosphate compared with that of the capillary titania porous-layer open-tubular geometry.  相似文献   

16.
The selectivity of capillary columns coated with biscyanopropyl siloxane stationary phases for the separation of fatty acid methyl esters has been optimized by means of computer-assisted column temperature optimization software. Temperature programming rates yielding the highest resolution in the shortest analysis time were selected for split, splitless, and on-column injection operated in the constant pressure and pressure programmed modes.  相似文献   

17.
In this study, the retention and selectivity of a mixture of basic polar drugs were investigated in hydrophilic interaction chromatographic conditions (HILIC) using nano-liquid chromatography (nano-LC). Six sympathomimetic drugs including ephedrine, norephedrine, synephrine, epinephrine, norepinephrine and norphenylephrine were separated by changing experimental parameters such as stationary phase, acetonitrile (ACN) content, buffer pH and concentration, column temperature. Four polar stationary phases (i.e. cyano-, diol-, aminopropyl-silica and Luna HILIC, a cross-linked diol phase) were selected and packed into fused silica capillary columns of 100 μm internal diameter (i.d.). Among the four stationary phases investigated a complete separation of the all studied compounds was achieved with aminopropyl silica and Luna HILIC stationary phases only. Best chromatographic results were obtained employing a mobile phase composed by ACN/water (92/8, v/v) containing 10 mM ammonium formate buffer pH 3. The influence of the capillary temperature on the resolution of the polar basic drugs was investigated in the range between 10 and 50 °C. Linear correlation of ln k vs. 1/T was observed for all the columns; ΔH° values were negative with Luna HILIC and positive with aminopropyl- and diol-silica stationary phases, demonstrating that different mechanisms were involved in the separation.To compare the chromatographic performance of the different columns, Van Deemter curves were also investigated.  相似文献   

18.
Quasi‐interpenetrating network (quasi‐IPN) of linear polyacrylamide (LPA) with low molecular mass and poly(N,N‐dimethylacrylamide) (PDMA), which is shown to uniquely combine the superior sieving ability of LPA with the coating ability of PDMA, has been synthesized for application in dsDNA and basic protein separation by CE. The performance of quasi‐IPN on dsDNA separation was determined by polymer concentration, electric field strength, LPA molecular masses and different acrylamide (AM) to N,N‐dimethylacrylamide (DMA) ratio. The results showed that all fragments in Φ×174/HaeIII digest were achieved with a 30 cm effective capillary length at –6 kV at an appropriate polymer solution concentration in bare silica capillaries. Furthermore, EOF measurement results showed that quasi‐IPN exhibited good capillary coating ability, via adsorption from aqueous solution, efficiently suppressing EOF. The effect of the buffer pH values on the separation of basic proteins was investigated in detail. The separation efficiencies and analysis reproducibility demonstrated the good potentiality of quasi‐IPN matrix for suppressing the adsorption of basic proteins onto the silica capillary wall. In addition, when quasi‐IPN was used both as sieving matrix and dynamic coating in bare silica capillaries, higher peak separation efficiencies, and better migration time reproducibility were obtained.  相似文献   

19.
The gas chromatographic use of flexible thin walled soft glass capillary columns coated with non-polar stationary phases is compared to similar columns made of fused silica glass. With non-polar soft glass columns, the use of surface roughening viagaseous HCI followed by a Carbowax 20 M pretreatment gave adsorptive phenomena, and thermal instability. With very polar soft glass columns where a variety of cyanopropyl silicone phases were coated directly onto the NaCI crystal matrix, adsorptive effects were again prominent and frequent break-down in film stability with time, was also observed. These undesirable effects were due to the presence of metal oxides in the soft glass. Attempts to remove these materials from the thin walled soft glass surface by means of acid leaching produced significant brittleness. This deleterious result was further increased by attempts at high temperature silylation or polysiloxane deactivation. In sharp contrast, the fused silica surface was essentially free of metal oxides and the surface silanol groups are easily neutralized by silylation or polysiloxane deactivation techniques. No brittleness was observed following these procedures. An increasing series of high molecular weight, viscous, polymeric vinyl containing non-polar and highly polar stationary phases have been produced which readily wet the surface of the fused silica and are easily crosslinked in the presence of free radical generators. These columns are essentially free of all the problems noted with flexible thin walled soft glass. When all of the parameters involved in the fabrication of a glass capillary column are assessed, it appears at this time, that the flexible fused silica glass column with cross linked phases approaches the “ideal” capillary column.  相似文献   

20.
Capillary action LC (caLC) is introduced as a technique using capillary action as the driving force to perform LC in capillary columns packed with HPLC type microparticulate materials. A dry packing method with centrifugal force was developed to prepare capillary columns in parallel (10 columns per 3 min) to support their disposable use in caLC. Using a digital microscope for real‐time imaging and recording separations of components in a dye mixture, caLC was found to have flow characteristics similar to TLC. Based on the investigation of microparticulate HPLC silica gels of different size (1.5–10 μm) and a typical TLC grade irregular medium, Merck 60G silica, the van Deemter curves suggested molecular diffusion as the major contribution to band broadening in caLC. With Waters Xbridge 2.6 μm silica, plate heights down to 8.8 μm were obtained, comparable to those achievable in HPLC. Assisted by an image‐processing method, the visual caLC separation was converted to a classical chromatogram for further data analysis and such a facility confirmed the observation of highly efficient bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号