首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The UV/Vis, infrared absorption, and Raman scattering spectra of 3',4'-dibutyl-5,5"-bis(dicyanomethylene)-5,5"-dihydro-2,2':5',2"-terthiophene have been analyzed with the aid of density functional theory calculations. The compound exhibits a quinoid structure in its ground electronic state and presents an intramolecular charge transfer from the terthiophene moiety to the C(CN)2 groups. The molecular system therefore consists of an electron-deficient terthiophene backbone end-capped with electron-rich C(CN)2 groups. The molecule is characterized by a strong absorption in the red, due to the HOMO-->LUMO pi-pi* electronic transition of the terthiophene backbone that shifts hypsochromically on passing from the solid state to solution and with the polarity of the solvent. The analysis of the vibrational spectra confirms the structural conclusions and supports the existence of an intramolecular charge transfer. Vibrational spectra in several solvents and as a function of temperature have also been studied. Significant frequency upshifts of the vibrations involved in the pi-electron-conjugated pathway have been noticed upon solution in polar solvents and with the lowering of the temperature. Finally, we propose a quinoid molecule as a reliable structural and electronic model for dication species in doped oligothiophenes or for bipolaron charged defects in doped polythiophene.  相似文献   

2.
孟素慈  黄宗浩  徐栋  阚玉和  唐前林 《化学学报》2004,62(11):1065-1070,M005
运用密度泛函DFT B3LYP/6-31G(d)方法对CN和CF3吸电子基团取代的PPV类衍生物的三聚体进行了几何构型优化,并采用含时密度泛函TD-DFT、B3LYP/6-31G(d)方法计算了其相应化合物的紫外吸收光谱.通过对CN和CF3取代的PPV类衍生物的分子几何结构、前线分子轨道能级、电子云分布规律的分析,从理论上解释了共轭CN与非共轭CF3吸电子取代基对其光谱性质影响的差异:前者使相应PPV类衍生物的吸收光谱发生红移,后者则发生蓝移.计算结果还表明用TD-DFT方法计算该体系的紫外吸收光谱值与实验数据吻合得很好;另外引入CN和CF3基团之后,使其相应的PPV衍生物的LUMO能级降低,电子亲合势增加,都是很好的电子传输材料.  相似文献   

3.
4.
The Fourier transform infrared (FT-IR) and FT-Raman of 4-methyl-2-cyanobiphenyl (4M2CBP) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies have been investigated with the help of density functional theory (DFT) method. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge including atomic orbital (GIAO) method. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of 4M2CBP are calculated using HF/6-311G(d,p) method on the finite-field approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies (E2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra.  相似文献   

5.
Given the tremendous potential applications of excited state intramolecular proton transfer (ESIPT) systems, ESIPT molecules have received widespread attention. In this work, based on density functional theory (DFT) and time‐dependent DFT (TDDFT) methods, we theoretically study the excited state dynamical behaviors of salicyladazine (SA) molecules. Our simulated results show that the double intramolecular hydrogen bonds of SA are strengthened in the S1 state via exploring bond distances, bond angles, and infrared (IR) vibrational spectra. Exploring the frontier molecular orbitals (MOs), we confirm that charge redistributions indeed have effects on excited state dynamical behaviors. The increased electronic densities on N atoms and the decreased electronic densities on O atoms imply that charge redistribution may trigger the ESPT process. Analyzing the constructed S0‐state and S1‐state potential energy surfaces (PESs), we confirm that only the excited state single proton transfer reaction can occur although SA possesses two intramolecular hydrogen bonds. In this work, we clarify the specific ESIPT mechanism, which may facilitate developing novel applications based on the SA system in future.  相似文献   

6.
《结构化学》2020,39(8):1422-1436
In this research, a density functional theory(DFT) calculation was performed for investigation adsorption behavior of the anticancer drug Vemurafenib on BNNT(5,5-9) by using the M06-2X/6-31 G* level of theory in the solvent water. The electronic spectra of the Vemurafenib drug, BNNT(5,5-9) and complex BNNT(5,5-9)/Vemurafenib in solvent water were calculated by Time Dependent Density Functional Theory(TD-DFT) for the study of adsorption effect. The non-bonded interaction effects of the Vemurafenib drug with BNNT(5,5-9) on the electronic properties, natural charges and chemical shift tensors have been also detected. The results display the change in title parameters after process adsorption. According to the natural bond orbital(NBO) results, the molecule Vemurafenib and BNNT(5,5-9) play as both electron donor and acceptor at the complex BNNT(5,5-9)/Vemurafenib. On the other hand, the charge transfer occurs between the bonding, antibonding or nonbonding orbitals in two molecules drug and BNNT. As a consequence, BNNT(5,5-9) can be considered as a drug delivery system for the transportation of Vemurafenib as anticancer drug within the biological systems.  相似文献   

7.
In the present work, the interaction between drug Granisetron(GRS) and BN(7,7-7) nanotube by density functional theory(DFT) calculations in the solvent water has been investigated. The non-bonded interaction effects of the molecule GRS with BN(7,7-7) nanotube on chemical shift tensors, natural charge and electronic properties such as the energy gap between HOMO and LUMO, global hardness, electronegativity and electronic chemical potential have been also detected. The natural bond orbital(NBO) analysis suggested that charge transfer depended between GRS and nanotube and induces a dipole moment in the complex. Then, the possibility of the use of BN(7,7-7) nanotube for GRS delivery to the diseased cells has been established.  相似文献   

8.
We present a novel method for time-dependent density functional theory calculations on dynamic linear response and electron density evolution in the real-time domain with the finite basis expansion approach of conventional quantum chemistry. To demonstrate the validity and efficiency of this method, dynamic polarizabilities of a water chain and diphenylene molecules are computed by employing the Chebyshev interpolation algorithm, which was developed by Baer and co-workers. The calculated dynamic polarizabilities show good agreement with those obtained from conventional linear response calculations. The density evolution in the real-time domain with application of a long-duration electric field gives electronic conduction in molecules, where a dynamic process of charge transfer is observed with the snapshots of response density in real time. Charge transfer oscillating with the frequency of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap is shown in a diphenylene molecule while there is little change in time for a water chain.  相似文献   

9.
The ground state structure and frontier molecular orbital of newly synthesized carbazole-fluorene based D-π-A organic dyes, CFP1A, CFP2A, CFP1CA, and CFP2CA, were theoretically investigated using density functional theory (DFT) at B3LYP/6-31G(d,p) level. These dye molecules have been constructed based on carbazole-fluorene as the electron-donating moiety while introducing benzene units as π-spacer connected to different anchor groups, such as acrylic acid and cyanoacrylic acid, as acceptors. The electronic vertical excitation energies and absorption wavelength were carried out using time-dependent DFT (TD-DFT). Furthermore, the adsorptions of phenylacrylic acid and phenylcyanoacrylic acid on the TiO(2) anatase (101) surface were carried out by means of quantum-chemical periodic calculations employing periodic PBE functional with DNP basis set. The results promise that anchor dyes with strong withdrawing CN group have easier injected electron to the conduction band of semiconductor implying that CFP1CA and CFP2CA show better performance among four dyes. Additionally, the intramolecular charge transfers (ICT) from electron donor group to anchoring group of CFP1CA and CFP2CA have shown better performance. The calculated results provide the efficiency trend of our new dyes as CFP1CA ≈ CFP2CA > CFP1A ≈ CFP2A which are excellently agree with experimental observation.  相似文献   

10.
Jarzecki AA 《Inorganic chemistry》2007,46(18):7509-7521
Density functional theory (DFT) structure calculations and time-dependent DFT electronic excitation calculations on simple mononuclear lead structures confirm recent reports on the stabilization of tricoordinated structural domains in poisoned proteins. However, the possibility of the formation of tetracoordinated lead complexes should not be disregarded in studies on mechanisms of lead toxicity because structures with both coordination modes are plausible and might contribute to observed UV spectra. Reported calculations along with detailed molecular orbital analysis confirm that the intense UV signal at around 260 nm is an indicator of the ligand-to-metal charge transfer (LMCT) band where the electrons are transferred from the sulfur 3p orbital to the lead 6p orbital. The composition of the LMCT band reveals significant excitations not only from the Pb-S bonding orbitals but also from sulfur lone-pair orbitals to the Pb-S antibonding orbitals for which the electron density is largely localized on the Pb "6p-like" molecular orbitals. There is a solid indication that the stereochemically active pair orbital of lead is not strongly hybridized and remains largely of the 6s character in tricoordinated lead structures and is minimally hybridized in tetracoordinated lead structures. Computed UV spectra of lead model complexes are compared to experimental UV spectra of model lead peptides. The comparison shows a good agreement with the major spectral trends and changes observed in these experiments.  相似文献   

11.
The first hyperpolarizabilities and origin of nonlinear optical (NLO) properties of arylimido molybdate derivatives have been investigated by density functional theory (DFT). The molecular orbital character analysis reveals that organoimido-to-polyanion charge transfer may be responsible for the NLO properties of this kind of molybdate derivatives. The NLO study shows intra-ion charge transfer is helpful to increase the first hyperpolarizability of arylimido molybdate derivatives. The lengthening of organoimido pi-conjugation enhances the betavec value. System 4 has the largest betavec value at the static electronic field, 1.238 x 10(-27)esu. Orbital analysis shows that the degree of charge transfer between polyanion cluster and organic segment was increased when the second organoimido polyanion was introduced. The present investigation provides important insight into NLO origin and properties of polyanion arylimido molybdate derivatives.  相似文献   

12.
The ground‐state structure and frontier molecular orbital of D‐π‐A organic dyes, CFT1A, CFT2A, and CFT1PA were theoretically investigated using density functional theory (DFT) on B3LYP functional with 6‐31G(d,p) basis set. The vertical excitation energies and absorption spectra were obtained using time‐dependent DFT (TD‐DFT). The adsorptions of these dyes on TiO2 anatase (101) were carried out by using a 38[TiO2] cluster model using Perdew–Burke–Ernzerhof functional with the double numerical basis set with polarization (DNP). The results showed that the introduction of thiophene–thiophene unit (T–T) as conjugated spacer in CFT2A could affect the performance of intramolecular charge transfer significantly due to the inter‐ring torsion of T–T being decreased compared with phenylene–phenylene (P–P) spacer of CFP2A in the researhcers' previous report. It was also found that increasing the number of π‐conjugated unit gradually enhanced charge separation between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of these dyes, leading to a high‐efficiency photocurrent generation. The HOMO–LUMO energy gaps were calculated to be 2.51, 2.37, and 2.50 eV for CFT1A, CFT2A, and CFT1PA respectively. Moreover, the calculated adsorption energies of these dyes on TiO2 cluster were ~14 kcal/mol, implying that these dyes strongly bind to TiO2 surface. Furthermore, the electronic HOMO and LUMO shapes of all dye–TiO2 complexes exhibited injection mechanism of electron via intermolecular charge‐transfer transition. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
10-Methoxy-2-phenylbenzo[h]quinoline (MPBQ) has been synthesized and characterized by NMR and X-ray single crystal diffraction. Both the ground and the lowest singlet excited-state geometries of MPBQ were optimized by B3LYP and ab initio CIS methods at 6-31G (d,p) level, respectively. The absorption and emission spectra of the compound were experimentally determined in CH(3)CN solution and were simultaneously computed using density functional theory (DFT) and time-dependent density functional theory (TDDFT) in CH(3)CN solution. The calculated absorption and emission wavelengths were in good agreement with the experimental ones. The calculated lowest-lying absorption spectra can be mainly attributed to intramolecular charge transfer (ICT). And the calculated fluorescence spectra can be mainly described as originating from an excited state with intramolecular charge transfer (ICT) character. These results show that MPBQ exhibited excellent thermal stability and could serve as a useful photoluminescence material.  相似文献   

14.
The electronic and vibrational spectra of 9-(Diethylamino)-benzo(a)phenoxazin-7-ium-5-N-methacrylamide (Nile Blue-5-N-methacrylamide) are measured, and the results are compared with the theoretical values obtained by quantum chemical calculations. The geometry, electronic transitions, charge distribution, and the IR normal modes of this new dye and of its precursor Nile Blue have been computed by using Density Functional Theory (DFT) method with the functional B3LYP and the 6-31G(d) Gaussian basis set. The molecular properties of the two dyes, predicted and observed, are very similar in the electronic ground state. In the excited state, however, the longer lifetime and larger fluorescence quantum yield of the Nile Blue-5-methacrylamide is ascribed to an inhibition of the twisted intramolecular charge transfer (TICT) process, when the NH2 is substituted by the methacrylamide in the 5-position of the aromatic extended ring of the dye. The change in charge density of the N atom in 5-position, as well as the difference in dipole moment and ionization potential of the two dyes molecules, explain the attenuation of TICT process. The vibration spectra of both dyes are simulated properly by using the DFT method.  相似文献   

15.
为了探究更高效率的敏化染料, 将三苯基均三嗪基团引入供体-受体-共轭π桥-受体(D-A-π-A)型WS-4(HB)敏化剂中, 设计了7种新型染料分子, 采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)方法优化了新型敏化剂的几何构型, 分析了分子的基态结构、 前线轨道能级、 吸收光谱、 激发能及分子内电荷转移等相关性质. 结果表明, 三苯基均三嗪可以有效改善以三苯胺为电子给体的染料性能, 其中在三苯基均三嗪上双侧连接三苯胺给体的染料HBL2表现出更低的能隙和光捕捉效率. 利用Multiwfn对染料HBL2电子转移情况进行分析, 结果表明, 三苯基均三嗪不仅可起到电子推拉作用, 还在一定程度上起到供体的作用, 对分子内电荷转移起到促进作用.  相似文献   

16.
The photocyclization behavior and dynamic conformational transition of photochromic switches of diarythene derivatives in solutions are investigated by using the density functional theory (DFT) and molecular dynamics (MD) simulations. Three possible conformations, antiparallel (anti), parallel (para), and twist, for the open-ring isomers of 1,2-bis(2-methylbenzothiophene-3-yl)maleic anhydride are located. Both PCM-B3LYP/6-31G* calculations and MD simulations demonstrate that anti and twist open-ring isomers can interconvert freely in n-hexane and acetonitrile solutions at room temperature. The statistical ratio of twist to anti isomers from MD simulations is 2.09 in n-hexane and 1.07 in CH(3)CN, in qualitative agreement with those (1.18 in n-hexane and 1.05 in CH(3)CN) estimated from Arrhenius analysis of DFT activation energies. The solvent polarity has little influence on the isomerization of open-ring isomers in the ground state. Due to the evident charge transfer upon excitations, the solvent effects on the electronic structures and absorption spectra of low-lying excited states (S(1) and S(2)) are more significant. For such charge-transfer excited states, the long-range corrected functional CAM-B3LYP gives better agreement with the experimental spectra than B3LYP. The solvent polarity and polarization of the charge-transfer excited states are crucial for fabricating the novel functionalized photochromic molecular switches.  相似文献   

17.
Fourier transform infrared (FTIR) spectrum of a well-known food dye sunset yellow FCF (E110) has been recorded and analysed. Assignments of the vibrational spectrum has been facilitated by density functional theory (DFT) calculations. The results of the optimized molecular structure obtained on the basis of B3LYP with 6-31G(d) along with the 'LANL2DZ' basis sets give clear evidence for the intramolecular charge transfer (ICT) and strong hydrogen bonding enhancing the optical nonlinearity of the molecule. The first hyperpolarizability of the acidic monoazo dye 'E110' is computed. Azo stretching frequencies have been lowered due to conjugation and pi-electron delocalization. Hydroxyl vibrations with intramolecular H-bonding are analyzed, supported by the computed results. The natural bond orbitals (NBO) analysis confirms this strong hydrogen bond between the hydrogen of the hydroxyl group and nitrogen of the azo group of the molecule. Assignments of benzene and naphthalene ring vibrations are found to agree well with the theoretical wave numbers.  相似文献   

18.
19.
Density functional theory (DFT) calculations show the higher energy HOMO (highest occupied molecular orbital) orbitals of four iron(II) diimine complexes are metal centered and the lower energy LUMO (lowest unoccupied molecular orbitals) are ligand centered. The energy of the orbitals correlates with electrochemical redox potentials of the complexes. Time-dependent density functional theory (TDDFT) calculations reveal ligand centered (LC) and metal-to-ligand charge transfer (MLCT) at higher energy than experimentally observed. TDDFT calculations also reveal the presence of d-d transitions which are buried under the MLCT and LC transitions. The difference in chemical and photophysical behavior of the iron complexes compared to that of their ruthenium analogues is also addressed.  相似文献   

20.
The geometry, electronic structure, polarizability and hyperpolarizability of dye sensitizer 3,4-bis[1-(carboxymethyl)-3-indolyl]-1H-pyrrole-2,5-dione (BIMCOOH) were studied using density functional theory (DFT) with hybrid functional B3LYP, and the electronic absorption spectra were investigated using semi-empirical quantum chemical method ZINDO-1 and time-dependent DFT (TDDFT). The results of natural bond orbital suggest that the natural charges of the dione, indole, and acetic groups are about 0.15e, -0.29e, and 0.44e, respectively. The calculated isotropic polarizability, polarizability anisotropy invariant and hyperpolarizability are 305.4, 188.3, and 1155.4 a.u., respectively. The electronic absorption spectral features in visible and near-UV region were assigned to the π→π^* transition due to the qualitative agreement between the experiment and the TDDFT calculations, and the transitions of the excited states 9-11 related to photoinduced intramolecular charge transfer processes. The analysis of electronic structure and UV-Vis absorption indicates that the indole groups primarily contributed sensitization of photo-to-currency conversion processes, and the interracial electron transfer between semiconductor TiO2 electrode and dye sensitizer BIMCOOH are electron injection processes from excited states of the dyes to the semiconductor conduction band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号