首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel copoly(p‐phenylene)s ( P1 – P2 ) containing bipolar groups (12.8 and 6.8 mol %, respectively), directly linked hole transporting triphenylamine and electron transporting aromatic 1,2,4‐triazole, were synthesized to enhance electroluminescence (EL) of poly(p‐phenylene vinylene) (PPV) derivatives. The bipolar groups not only enhance thermal stability but also promote electron affinity and hole affinity of the resulting copoly(p‐phenylene)s. Blending the bipolar copoly‐(p‐phenylene)s ( P1 – P2 ) with PPV derivatives ( d6‐PPV ) as an emitting layer effectively improve the emission efficiency of its electroluminescent devices [indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/polymer blend/Ca (50 nm)/Al (100 nm)]. The maximum luminance and maximum luminance efficiency were significantly enhanced from 310 cd m?2 and 0.03 cd A?1 ( d6‐PPV ‐based device) to 1450 cd m?2 and 0.20 cd A?1 (blend device with d6‐PPV / P1 = 96/4 containing ~0.5 wt % of bipolar groups), respectively. Our results demonstrate the efficacy of the copoly(p‐phenylene)s with bipolar groups in enhancing EL of PPV derivatives. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
New copoly(aryl ether)s ( P1 – P3 ) containing alternate 2,5‐dihexyloxy‐1,4‐di(m‐ethoxystyryl)benzene ( P1 , P2 ) or 2,5‐dihexyloxy‐1,4‐distyrylbenzene ( P3 ) chromophores and aromatic 1,3,4‐oxadiazole ( P1 ) or 3,3″‐terphenyldicarbonitrile ( P2 , P3 ) segments were prepared by Horner reaction ( P1 and P2 ) or nucleophilic displacement reaction ( P3 ). They are basically amorphous materials with 5% weight‐loss temperature above 410 °C. Their absorption, photoluminescence spectra, and quantum yields are dependent on the composition of the isolated fluorophores. The emissions are exclusively dominated by 1,4‐distyrylbenzene segments via excitation energy transfer from electron‐transporting 1,3,4‐oxadiazole ( P1 ) or 3,3″‐terphenyldicarbonitrile ( P2 , P3 ) chromophores. The HOMO and LUMO energy levels have been estimated from their cyclic voltammograms, and the observations confirm that oxidation and reduction start from the emitting 1,4‐distyrylbenzene and electron‐transporting segments, respectively, indicating that both carriers affinity can be enhanced simultaneously. Among the two‐layer PLED devices (ITO/PEDOT/ P1 – P3 /Al), P1 exhibits the best performance with a turn‐on field of 4 × 105 V/cm and a maximum luminance of 225 cd/m2. However, P2 emits green–yellow light (555 nm), owing to the excimer emission. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5009–5022, 2005  相似文献   

3.
Three novel copolyfluorenes ( P1 ‐ P3 ) containing pendant bipolar groups (2.5–7.7 mol %), directly linked hole‐transporting carbazole and electron‐transporting aromatic 1,2,4‐triazole, were synthesized by the Suzuki coupling reaction and applied to enhance emission efficiency of polymer light‐emitting diodes based on conventional MEH‐PPV. The bipolar groups not only suppress undesirable green emission of polyfluorene under thermal annealing, but also promote electron‐ and hole‐affinity of the resulting copolyfluorenes. Blending the bipolar copolyfluorenes with MEH‐PPV results in significant enhancement of device performance [ITO/PEDOT:PSS/MEH‐PPV+ P1 , P2 or P3 /Ca(50 nm)/Al(100 nm)]. The maximum luminance and luminance efficiency were enhanced from 3230 cd/m2 and 0.29 cd/A of MEH‐PPV‐only device to 15,690 cd/m2 and 0.81 cd/A (blend device with MEH‐PPV/ P3 = 94/6 containing about 0.46 wt % of pendant bipolar residues), respectively. Our results demonstrate the efficacy of the bipolar copolyfluorenes in enhancing emission efficiency of MEH‐PPV. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Copolyfluorene PFC containing pendant crown ether moieties was prepared by the palladium‐catalyzed Suzuki coupling reaction. The photo‐physical and electrochemical properties were investigated by absorption, photoluminescence (PL) spectroscopy, and cyclic voltammetry to elucidate the influence of the crown ether groups. In film state, its PL spectra (peaked at 430 and 452 nm) show noticeable red‐shift relative to 423 and 448 nm of poly(9,9‐dihexylfluorene) ( PF ). Thermal annealing leads to appearance of new emission at about 520 nm which has been attributed to formation of excimer. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of PFC were estimated to be ?5.68 and ?2.65 eV which contributed to balanced charges injection. Double‐layer electroluminescent device using PFC as emitting layer (ITO/PEDOT:PSS/ PFC /Ca/Al) revealed maximum luminance (7910 cd/m2) and maximum luminance efficiency (2.3 cd/A) superior to those of PF device (860 cd/m2, 0.29 cd/A). Moreover, inserting a PFC layer between the PF emitting layer and calcium cathode led to reduced turn‐on voltage (4.1 V), much lower than 7.1 and 6.6 V of the double‐layer PFC and PF devices, respectively, and enhanced device performance (2800 cd/m2 and 0.53 cd/A). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2985–2995, 2009  相似文献   

5.
Two new electron‐transporting copolyphenylenes P1NH and P2NH possessing balanced charges crucial to emission efficiency of polymer light‐emitting diodes (PLEDs) have been synthesized and applied as an electron‐transporting layer (ETL). The main chain structure is all para‐linkage for P1NH and both para‐ and meta‐linkage for P2NH , with the same pendant electron‐withdrawing benzimidazolyl and polar diethanolaminohexyloxy groups. Both copolymers possess excellent thermal stability (T d > 300 °C, T g > 100 °C) due to their rigid backbones. In addition, the pendant groups effectively lower LUMO (~ ?2.70 eV) and HOMO (~ ?5.70 eV) levels, resulting in improved electron‐transporting and hole‐blocking capabilities. Multilayer yellow‐emitting PLEDs with a configuration of ITO/PEDOT:PSS/SY/ETL/LiF/Al were successfully fabricated by the spin‐coating process. The maximum luminance and maximum current efficiency of the P1NH ‐based device were 12,881 cd/m2 and 10.94 cd/A, respectively, superior to the performance of P2NH ‐based device (4938 cd/m2, 3.70 cd/A) and the device without ETL (8690 cd/m2, 2.78 cd/A). Current results indicate that P1NH is highly effective in enhancing electron transport and device performance. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2494–2505  相似文献   

6.
New copoly(aryl ether) P1 consisting of alternate electron‐transporting 2‐(3‐(trifluoromethyl)phenyl)‐5‐(4‐(5‐(3‐(trifluoromethyl)phenyl)‐1,3,4‐oxadiazol‐2‐yl)‐2,5‐bis(hexyloxy)phenyl)‐1,3,4‐oxadiazole and hole‐transporting 2,5‐distyrylbenzene (DSB) was synthesized via nucleophilic substitution polymerization. We investigated the optical and electrochemical properties of alternate copoly(aryl ether)s P1 – P6 , which contain the same hole‐transporting DSB segments, but with different electron transporting segments. The effect of trifluoromethyl groups in electron transporting segments is also discussed. Referencing to the spectra of their model compounds M1 – M4 , the emissions of P1 – P3 are dominated exclusively by the hole‐transporting fluorophores with longer emissive wavelength about 452–453 nm via efficient excitation energy transfer. Furthermore, P1 – P3 also exhibit unique variations in energy transfer in acidic media and solvatochromism in organic solvents. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of P1 – P4 , estimated from electrochemical data, are ?5.12, ?5.15, ?5.18, ?5.00 eV and ?2.93, ?3.39, ?3.49, ?2.76 eV, respectively. The electron and hole affinity of P1 – P6 can be enhanced simultaneously by introducing isolated hole‐ and electron‐transporting segments in backbone. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5083–5096, 2005  相似文献   

7.
A new poly(arylene vinylene) derivative, poly(1,4‐fluorenylenevinylene), with the advantages of poly(p‐phenylene vinylene) and polyfluorene (PF), was designed, synthesized, and characterized. The polymer showed a defect‐free structure and a number‐average molecular weight of 32,600. The resulting polymer was thermally stable with a high glass‐transition temperature (200 °C) and was readily soluble in common organic solvents. The polymer film showed a maximum emission at 515 nm and had a photoluminescence quantum yield of 58 ± 5%. A cyclic voltammetry study revealed that the highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels of the polymer were 2.9 and 5.51 eV, respectively. The double‐layer light‐emitting‐diode devices fabricated from the polymer emitted bright green light with a maximum around 515 nm. The device showed a maximum luminous efficiency of 0.13 cd/A and a maximum luminance value of 600 cd/m2 at 17 V. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6515–6523, 2005  相似文献   

8.
Nonconjugated bipolar transport polymers have been developed as host materials for electroluminescent devices by incorporating both electron‐transporting and hole‐transporting functionalities into copolymers. The random copolymer PCt‐nvk3‐7 containing mesogen‐jacketed segment of P‐Ct have been synthesized and characterized. The effect of mesogen‐jacketed segment content of these bipolar copolymers on device performance has been investigated. The results of polymer light‐emitting diodes (PLEDs) show that the jacketed content of copolymers has a significant effect on device performance: lowering charge transport and facilitating the hole‐electron recombination leads to much higher current efficiency. Applying these high triplet random copolymers as host, the maximum current efficiency of 0.70 cd/A and the maximum brightness of 1872.8 cd/m2 was achieved for PCt‐nvk3‐7 with an orange‐emitting complex dopant. The results suggest that the bipolar copolymers PCt‐nvks can be good host polymers for electrophosphorescent devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7861–7867, 2008  相似文献   

9.
Four new copolyethers ( P1 – P4 ) consisting of two isolated emitting chromophores [2,5‐dihexyloxy‐1,4‐distyrylbenzene (HODSB) and 2,5‐dihexyloxy‐1,4‐di(4‐methylenestyryl)benzene (HOMDSB) for P1 and P2 , 2,5‐dihexyl‐1,4‐distyrylbenzene (HDSB) and HOMDSB for P3 and P4 ] in the backbone, in which P2 and P4 further contain electron‐transporting chromophores [7‐oxy‐4‐methylcoumarin (OMC)] in the side chain, were successfully prepared by the Heck coupling reaction. The photoluminescence spectra and quantum yields of the copolymers depended mainly on compositions of the isolated fluorophores. Their highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels were estimated from their cyclic voltammograms. Electrochemical investigations proved that the oxidation started at hole‐transporting DSB segments, whereas reduction began at electron‐transporting OMC groups in P2 and P4 . The electron affinity of P2 and P4 was enhanced by introducing electron‐transporting OMC chromophores. Double‐layer light‐emitting diodes (ITO/PEDOT:PSS / polymer/Al) of P1 and P2 revealed green electroluminescence, and those of P3 and P4 emitted blue light. Moreover, incorporation of OMC side groups effectively reduced turn‐on electric field and enhanced luminance efficiency of the EL devices due to increased electron affinity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 211–221, 2007  相似文献   

10.
A new high‐molecular‐weight poly(triarylamine), poly[di(1‐naphthyl)‐4‐anisylamine] (PDNAA), was successfully synthesized by oxidative coupling polymerization from di(1‐naphthyl)‐4‐anisylamine (DNAA) with FeCl3 as an oxidant. PDNAA was readily soluble in common organic solvents and could be processed into freestanding films with high thermal decomposition and softening temperatures. Cyclic voltammograms of DNAA and PDNAA exhibited reversible oxidative redox couples at the potentials of 0.85 and 0.85 V, respectively, because of the oxidation of the main‐chain triarylamine unit. This suggested that PDNAA is a hole‐transporting material with an estimated HOMO level of 5.19 eV. The absorption maximum of a PDNAA film appeared at 370 nm, with an estimated band gap of 2.86 eV from the absorption edge. Unusual multiple photoluminescence maxima were observed at 546 nm, and this suggested its potential application in white‐light‐emission devices. Nearly white‐light‐emission devices could be obtained with either a bilayer‐structure approach {indium tin oxide/poly(ethylenedioxythiophene):poly(styrene sulfonate)/PDNAA/poly[2,7‐(9,9‐dihexylfluorene)] (PF)/Ca} or a polymer‐blend approach (PF/PDNAA = 95:5). The luminance yield and maximum external quantum efficiency of the light‐emitting diode with the PF/PDNAA blend as the emissive layer were 1.29 cd/A and 0.71%, respectively, and were significantly higher than those of the homopolymer. This study suggests that the PDNAA is a versatile material for electronic and optoelectronic applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1727–1736, 2007  相似文献   

11.
We prepared two vinyl copolymers P1 and P2 containing pendant distyrylbenzene and aromatic 1,3,4‐oxadiazole derivatives, respectively, from their precursor poly(styrene‐ran‐4‐vinylbenzyl chloride) (Mw = 11,400, PDI = 1.18), which had been prepared by the controlled radical polymerization (RAFT). Two main chain polymers containing similar isolated distyrylbenzene ( P3) and aromatic 1,3,4‐oxadiazole ( P4 ) chromophores were also synthesized for comparative study. The resulted copolymers ( P1 – P4 ) are soluble in common organic solvents and are basically amorphous materials with 5% weight‐loss temperature higher than 360 °C. The PL spectral results reveal that the architecture of P1 prevents the formation of inter‐ or intramolecular interaction. The HOMO and LUMO levels of P2 , estimated from cyclic voltammetric data, are ?5.96 and ?3.81 eV, respectively, which are much lower than those of P1 (?5.12 and ?3.11 eV). The emission of blend from P1 and P2 are contributed mainly from distyrylbenzene fluorophore (~450 nm) owing to efficient energy transfer. Moreover, the blend exhibits three kinds of redox behavior depending on their weight ratios. The luminance and current efficiency of the EL device lpar;ITO/PEDOT/ MEH ‐ PPV + P2 /Al) are 503 cd/m2 and 0.11 cd/A, which can be improved to 1285 cd/m2 and 0.44 cd/A, respectively, as the weight ratio of P2 increases from 0 to 20%. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5362–5377, 2006  相似文献   

12.
This article presents the synthesis and electroluminescent (EL) properties of a stable blue‐light‐emitting copolyfluorene ( P1 ) consisting of carbazole, oxadiazole and charge‐trapping anthracene groups by Suzuki coupling reaction. The hole‐transporting carbazole and electron‐transporting oxadiazole improve charges injection and transporting properties, whereas the anthracene is the ultimate emitting chromophore. The thermal, photophysical, electrochemical, and EL properties of P1 were investigated by thermogravimetric analysis, differential scanning calorimeter, optical spectroscopy, cyclic voltammetry, and EL devices fabrication and characterization. P1 demonstrated high‐thermal stability with thermal decomposition and glass tranistion temperatures above 400 and 145°C, respectively. In film state, P1 showed blue emission at 451 nm attributed to anthracene chromophore. Photophysical and electrochemical investigations demonstrate that effective energy transfer from fluorene to anthracene segments and charges trapping on anthracene segments leads to efficient and stable blue emission originating from anthracence. Polymer light‐emitting diodes using P1 as the emitting layer (ITO/PEDOT:PSS/ P1 /Ca/Al) exhibited excellent current efficiency (5.1 cd/A) with the CIE coordinate being (0.16, 0.11). The results indicate that copolyfluorene is a promising candidate for the blue‐emitting layer in the fabrication of efficient PLEDs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
To simplify the fabrication of multilayer light‐emitting diodes, we prepared a p‐phenylenevinylene‐based polymer capped with crosslinkable styrene through a Wittig reaction. Insoluble poly(p‐phenylenevinylene) derivative (PPVD) films were prepared by a thermal treatment. The photoluminescence and ultraviolet–visible (UV–vis) absorbance of crosslinked films and noncrosslinked films were studied. We also studied the solvent resistance of crosslinked PPV films with UV–vis absorption spectra and atomic force microscopy. Double‐layer devices using crosslinked PPVD as an emitting layer, 2‐(4‐tert‐butylphenyl)‐5‐phenyl‐1,3,4‐oxadiazole (PBD) in poly(methyl methacrylate) as an electron‐transporting layer, and calcium as a cathode were fabricated. A maximum luminance efficiency of 0.70 cd/A and a maximum brightness of 740 cd/m2 at 16 V were demonstrated. A 12‐fold improvement in the luminance efficiency with respect to that of single‐layer devices was realized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2124–2129, 2004  相似文献   

14.
In this paper, the electroluminescent properties of a new partially‐conjugated hyperbranched poly (p‐phenylene vinylene) (HPPV) were studied. The single layer light‐emitting device with HPPV as the emitting layer emits blue‐green light at 496 nm, with a luminance of 160 cd/m2 at 9 V, a turn‐on voltage of 4.3 V and an electroluminescent efficiency of 0.028 cd/A. By doping an electron‐transport material [2‐(4‐biphenylyl)‐5‐phenyl‐1,3,4‐oxadiazole, PBD] into the emitting layer and inserting a thin layer of tris(8‐hydroxy‐quinoline)aluminum (Alq3) as electron transporting/hole blocking layer for the devices, the electroluminescent efficiency of 1.42 cd/A and luminance of 1700 cd/m2 were achieved. The results demonstrate that the devices with the hyperbranched polymers as emitting material can achieve high efficiency through optimization of device structures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
To investigate the effect of trifluoromethyl groups in enhancing electron affinity of aromatic oxadiazole and triazole chromophores, we prepared four new copoly(aryl ether)s ( P1 – P4 ) consisting of bis(3‐(trifluoromethyl) phenyl)‐1,3,4‐oxadiazole (ETO) or bis(3‐(trifluoromethyl)phenyl)‐4‐(4‐hexyloxyphenyl)‐4H‐1,2,4‐triazole (ETT) segments and hole‐transporting segments [2,5‐distyrylbenzene (HTB) or bis(styryl)fluorine (HTF)]. Molecular spectra (absorption and photoluminescence) and cyclic voltammetry were used to investigate their optical and electrochemical properties. The emissions of P1 – P4 are dominated by the hole‐transporting fluorophores with longer emissive wavelengths around 442–453 nm via efficient excitation energy transfer. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of P1 – P4 , estimated from electrochemical data, are ?5.15, ?5.18, ?5.30, ?5.27, ?3.39, ?3.49, ?3.36, and ?3.48 eV, respectively. The LUMO levels of ETO and ETT segments are significantly reduced to ?3.39~?3.36 eV and ?3.48~?3.49 eV, respectively, as compared with ?2.45 eV of P5 containing a 2,5‐diphenyl‐1,3,4‐oxadiazole segment. Moreover, electron and hole affinity can be enhanced simultaneously by introducing isolated hole‐ and electron‐transporting segments in the backbone. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5900–5910, 2004  相似文献   

16.
We have developed efficient white‐light‐emitting polymers through the incorporation of low‐bandgap orange‐light‐emitting benzoselenadiazole ( BSeD ) moieties into the backbone of a blue‐light‐emitting bipolar polyfluorene (PF) copolymer, which contains hole‐transporting triphenylamine and electron‐transporting oxadiazole pendent groups. By carefully controlling the concentrations of the low‐energy‐emitting species in the resulting copolymers, partial energy transfer from the blue‐fluorescent PF backbone to the orange‐fluorescent segments led to a single polymer emitting white light and exhibiting two balanced blue and orange emissions simultaneously. Efficient polymer light‐emitting devices prepared using this copolymer exhibited luminance efficiencies as high as 4.1 cd/A with color coordinates (0.30, 0.36) located in the white‐light region. Moreover, the color coordinates remained almost unchanged over a range of operating potentials. A mechanistic study revealed that energy transfer from the PF backbone to the low‐bandgap segments, rather than charge trapping, was the main operating process involved in the electroluminescence process. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2938–2946, 2007  相似文献   

17.
To study the effect of connector structure between hole‐ and electron‐transporting segments, we synthesized and characterized new electroluminescent polymers P 1 – P 7 consisting of hole‐transporting 1,4‐bis(hexyloxy)‐2,5‐distyrylbenzene (DSB: P 1 and P 2 ) and electron‐transporting 4‐(4‐(hexyloxy)phenyl)‐3,5‐diphenyl‐4H‐1,2,4‐triazole (TAZ: P 3 and P 4 ) or 2‐(2,5‐bis(hexyloxy)‐4‐(5‐phenyl‐1,3,4‐oxadiazol)phenyl)‐5‐phenyl‐1,3,4‐oxadiazole (DIOXD: P 5 – P 7 ) segments linked by different connectors. The connectors between hole‐ and electron‐transporting segments are (1) 1,4‐phenylene in P 3 and P 5 , (2) 1,4‐divinylbenzene in P 4 and P 6 , and (3) 4,4′‐biphenyl in P 7 . Three corresponding end‐capped model polymers P 1‐M , P 2‐M , and P 3‐M were also synthesized to evaluate the effect of end groups. From optimized semiempirical MNDO calculations, the adjacent benzene rings between DSB and TAZ or DIOXD chromophores in P 3 , P 5 , and P 7 twist about 81°–89°. The effect of twisted architectures and connectors in optical and electrochemical properties for P 1 – P 7 have been discussed by comparing with copolymers P 1 and P 2 , which possess single bond or ether spacer as connectors. From cyclic voltammograms, the torsion in P 3 , P 5 , and P 7 confines electron delocalization and leads to simultaneously enhanced hole and electron affinity as compared to those of P 1 and P 2 . Furthermore, double‐layer light‐emitting diodes with a configuration of ITO/PEDOT:PSS/ P 1 – P 7 /Al all reveal green–yellow electroluminescence with maximum luminance at 8–320 cd/m2 and their performances are greatly influenced by the connector's structure. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4514–4531, 2006  相似文献   

18.
Three random copolymers ( P1–P3 ) comprising phenylenevinylene and electron‐transporting aromatic 1,3,4‐oxadiazole segments (11, 18, 28 mol %, respectively) were prepared by Gilch polymerization to investigate the influence of oxadiazole content on their photophysical, electrochemical, and electroluminescent properties. For comparative study, homopolymer poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐p‐phenylenevinylene] ( P0 ) was also prepared by the same process. The polymers ( P0–P3 ) are soluble in common organic solvents and thermally stable up to 410 °C under a nitrogen atmosphere. Their optical properties were investigated by absorption and photoluminescence spectroscopy. The optical results reveal that the aromatic 1,3,4‐oxadiazole chromophores in P1–P3 suppress the intermolecular interactions. The HOMO and LUMO levels of these polymers were estimated from their cyclic voltammograms. The HOMO levels of P0–P3 are very similar (?5.02 to ?5.03 eV), whereas their LUMO levels decrease readily with increasing oxadiazole content (?2.7, ?3.08, ?3.11, and ?3.19 eV, respectively). Therefore, the electron affinity of the poly(p‐phenylenevinylene) chain can be gradually enhanced by incorporating 1,3,4‐oxadiazole segments. Among the polymers, P1 (11 mol % 1,3,4‐oxadiazole) shows the best EL performance (maximal luminance: 3490 cd/m2, maximal current efficiency: 0.1 cd/A). Further increase in oxadiazole content results in micro‐phase separation that leads to performance deterioration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4377–4388, 2007  相似文献   

19.
A novel aryl‐bridged triphenylamine derivative, 7‐t‐butyl‐5,5,9,9‐tetraaryl‐13b‐aza‐naphtho[3,2,1‐de]anthracene (ABTPA) was designed and synthesized. The alternating copolymers of ABTPA/dihexylfluorene ( P1 ) and triphenylamine (TPA)/dihexylfluorene ( P2 ) were synthesized by Suzuki coupling reaction. P1 shows excellent thermal stability with a decomposition temperature of 440 °C and a glass‐transition temperature of 326 °C. The HOMO energy levels of the two polymers are very close (?5.15 eV for P1 and ?5.13 eV for P2 ). The maximum absorption peak of P1 is red shifted by 23 nm with respect to P2 , because the incorporation of ABTPA units into the PF backbone enhances the electronic conjugation degree compared with the case of TPA units. The rigidity and the steric hindrance of the ABTPA in P1 result in a small Stokes shift and almost the same emission spectra of P1 between its film and solution. A PLED with simple configurations of ITO/ P1 /TNS (tetranaphthalen‐2‐yl‐silane)/Alq3 (tris(8‐hydroxyquinolinolato)aluminum)/Al emits a blue light with emission peak at 436 nm, and exhibits a maximum current efficiency of 1.89 cd/A and a maximum luminance of 4183 cd/m2, which is superior to the device with P2 as emissive layer under the identical conditions. These results indicate that ABTPA unit could be a very promising candidate to replace TPA unit and find widely application in organic/polymeric optoelectronic materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3651–3661, 2009  相似文献   

20.
To study the influence of a blue‐emitting iridium complex pendant on the optoelectronic properties of its 2,7‐polyfluorene (PF) derivatives with the carbazole and oxadiazole pendants, a class of 2,7‐PF derivatives containing carbazole, oxadiazole, and/without the cyclometalated iridium complex pendants in the C‐9 positions of fluorene unit were synthesized. Their thermal, photophysical, electrochemical, and electroluminescent (EL) properties were investigated. Among these 2,7‐PF derivatives (P 1 –P 4 ), P 2 and P 3 exhibited higher photoluminescence efficiency in dichloromethane and better EL properties in the single‐emissive‐layer polymer light‐emitting devices. The highest brightness of 3888 cd/m2 and the maximum current efficiency of 2.9 cd/A were obtained in the P 2 ‐ and P 3 ‐based devices, respectively. The maximum brightness and efficiency levels were 1.7 and 2.1 times, respectively, higher than the corresponding levels from the parent 2,7‐PF derivative (P 1 )‐based devices. Our work indicated that EL properties of 2,7‐PF derivatives can be improved by introducing the blue‐emitting iridium complex into the alkyl side chain of fluorine unit as pendant. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号