首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium hydrogenmelonate heptahydrate Ca[HC6N7(NCN)3] · 7H2O was obtained by metathesis reaction in aqueous solution. The structure of the molecular salt was elucidated by single‐crystal X‐ray diffraction. The crystal structure consists of alternating layers of planar monopronated melonate ions, Ca2+ and crystal water molecules. The anions of adjacent layers are staggered so that no π–π stacking occurs. The melonate entities are interconnected by hydrogen bonds within and between the layers. Ca[HC6N7(NCN)3] · 7H2O was investigated by solid‐state NMR and FTIR spectroscopy, TG and DTA measurements.  相似文献   

2.
The first example of a heteropolyoxomolybdate containing palladium(IV) was isolated and characterized by X‐ray crystallography. The palladium(IV) hexamolybdate, K0.75Na3.75[PdMo6O24H3.5]·17H2O, was isolated from an aqueous solution at pH 4.5 in the space group P\bar{1} , a 10.790(2), b 12.244(3), c 14.086(3) Å, α 113.77(1), β 90.41(1),γ 107.86(1)°, and the structure was determined using X‐ray diffraction methods, refining to a residual of 0.0301 for 5334 reflections. A formal “[PdMo6O24H3]5–” subunit exhibits the basic Anderson structure, with two [PdMo6O24H3]5– cluster anions in the structure bridged by a hydrogen atom (formally an H+) situated on a center of symmetry to give a “[Pd2Mo12O48H7]9–” dimeric anion. The palladium(IV) atom occupies a slightly distorted octahedral environment, with Pd–O distances ranging from 1.968 to 2.009 Å.  相似文献   

3.
The calcium salts Ca2P2O6 · 2H2O ( 1 ) and [Ca(H2O)3(H2P2O6)] · 0.5(C12H24O6) · H2O ( 2 ) were prepared and structurally characterized by single‐crystal X‐ray diffraction. Compound 1 crystallizes in the orthorhombic space group Pbca and compound 2 in the monoclinic space group P21/n. The crystal structure of compound 1 consists of chains of edge‐sharing [CaO7] polyhedra linked by hypodiphosphate(IV) anions to form a three‐dimensional network. The crystal structure of compound 2 consists of alternated layers of crown ether and water molecules and respective ionic units. Within the layers of ionic units the Ca2+ cations are octahedrally coordinated by three monodentate dihydrogenhypodiphosphate(IV) anions and three water molecules. The IR/Raman spectra of the title compounds were recorded and interpreted, especially with respect to the [P2O6]4– and [H2P2O6]2– groups. The phase purity of 2 was verified by powder diffraction measurements.  相似文献   

4.
The new supramolecular compound [H2bpp][{Cu(Hbpy)2}{α‐HP2W18O62}]·4H2O ( 1 ) (bpy = 4,4′‐bipyridine, bpp = 1,3‐bis(4‐pyridyl)propane) was synthesized hydrothermally and characterized byelemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction. In compound 1 , the cationic fragment [Cu(Hbpy)2]+ connects to the Dawson anion through a coordinating Cu←O bond, and the copper atom is coordinated by another polyoxoanion through a weak covalent bond with a Cu1–O26 distance of 2.879(2) Å, forming a polymeric chain. The bpy ligand in [Cu(Hbpy)2]+ adopts a monodentate coordination mode, the other nitrogen atom of the bpy ligand is protonated. The protonated Hbpy+ acts as hydrogen‐bond donor and constructs a two‐dimensional double‐sheet supramolecular network involving the one‐dimensional chains through the hydrogen bonds. The H2bpp2+ ion connects twoα‐HP2W18O626– clusters from two supramolecular networks through hydrogen bonds and creates a three‐dimensional supramolecular architecture. The thermal decomposition of 1 happens over a wide temperature range (450–800 °C), which indicates that it might include complicated oxidation–reduction processes.  相似文献   

5.
The heptacoordinate transition metal coordination compound [Cd(SCZ)3(H2O)](PA)2 · 3H2O ( 1 ) with the ligand semicarbazide (SCZ) and the counteranion picrate (PA) was synthesized and characterized by elemental analysis and FTIR spectroscopy. Single‐crystal X‐ray diffraction analysis revealed that 1 crystallizes in the monoclinic space group P21/c. The Cd2+ ion is heptacoordinated by three SCZ groups and a water molecule. SCZ presents typical bidentate coordination modes. The thermal decomposition mechanism of 1 was studied by differential scanning calorimetry (DSC), which revealed that complex 1 exhibits three small endothermic and two large exothermic processes. The non‐isothermal kinetics parameters were calculated by the Kissinger's method and Ozawa‐Doyle's method, respectively. The heat of combustion was measured by oxygen bomb calorimetry. The enthalpy of formation, the critical temperature of thermal explosion, the entropy of activation (ΔS), the enthalpy of activation (ΔH), and the free energy of activation (ΔG) were also calculated. Sensitivity tests revealed that 1 is insensitive to mechanical stimuli.  相似文献   

6.
Single crystals of Sr[B(C6H5O7)2](H2O)4 · 3H2O, a new borate‐citrate material, were grown with sizes up to 8 × 6 × 2 mm by slow evaporation of water at room temperature. The structure of Sr[B(C6H5O7)2](H2O)4 · 3H2O was determined by single‐crystal X‐ray diffraction. It crystallizes in the monoclinic space group P21/c, with a = 11.363(3) Å, b = 18.829(4) Å, c = 11.976(3) Å, β = 110.736(3)°, and Z = 4. The SrO8 dodecahedra, BO4 tetrahedra and citrate groups are linked together to form chains. The compound was characterized by IR and UV/Vis/NIR transmittance spectroscopy as well as thermal analysis.  相似文献   

7.
Magnesium dicyanamide tetrahydrate Mg[N(CN)2]2 · 4 H2O was synthesized by aqueous ion exchange starting from Na[N(CN)2] and Mg(NO3)2 · 6 H2O. The crystal structure was solved and refined on the basis of powder X‐ray diffraction data (P21/c, Z = 2, a = 737.50(2), b = 732.17(1), c = 971.67(2) pm, β = 98.074(1)°, wRp = 0.059, Rp = 0.046, RF = 0.075). In the crystal there are neutral complexes [Mg[N(CN)2]2(H2O)4] which are only connected via hydrogen bonds. Above 40 °C the tetrahydrate decomposes into anhydrous Mg[N(CN)2]2.  相似文献   

8.
Ca5[Si2Al2N8] was synthesized from elementary aluminum and silicon with phase‐pure tricalcium dinitride at 1280 K under dry argon in a sealed niobium ampoule. Ca3N2 was freshly prepared from distilled calcium metal in a dry nitrogen atmosphere. The compound crystallizes in form of transparent yellow distorted octahedra. In air and under moisture Ca5[Si2Al2N8] undergoes hydrolysis. The structure was determined from a single crystal to be orthorhombic (space group Pbcn – no. 60, a = 925.5, b = 614.0 and c = 1557.8 pm). The nitridoaluminate and ‐silicate substructures are separated into planes of edge and corner‐shared aluminate tetrahedra, which are linked by edge‐sharing double tetrahedral pillars of the silicate. The structure was confirmed by electrostatic and quantum mechanical analysis.  相似文献   

9.
The title complex {[Co(dimb)2(H2O)2]·(NO3)2·(H2O)2}n ( 1 ) (dimb = 1,3‐di(imidazol‐1‐ylmethyl)‐5‐methylbenzene) has been hydrothermally synthesized by the reaction of dimb with Co(NO3)2·6H2O in aqueous solution. The cobalt(II) atoms are linked by bridging dimb ligands to form 2D corrugated and wavy networks containing Co4(dimb)4 macrocyclic motifs. Two neighboring independent layers interlinked each other in a parallel fashion to construct three‐dimensional structure by O–H···O, N–H···O and C–H···O hydrogen bonds. Magnetic measurement shows the weak antiferromagnetic interaction with a one‐dimensional chain model in the range of 5–300 K, with J of –0.68 cm−1.  相似文献   

10.
The reaction of a mixture of barium and rhenium (3:1) at 850 °C under flowing nitrogen yielded the nitride‐oxide (Ba6O)(ReN3)2 (R (No. 148); a = 8.1178(2) Å, c = 17.5651(4) Å; V = 1002.43(5) Å3; Z = 6). According to a structure refinement on X‐ray powder diffraction data, this compound is isostructural to a recently described nitride‐oxide of osmium of analogous composition. The structure consists of sheets of trigonal ReN3 units and trigonal antiprismatic Ba6O groups. The Ba–O distance of 2.73 Å is close to the sum of the respective ionic radii. The trigonal ReN35– nitride anion displays a Re–N bond length of 1.94 Å, and is planar within the limits of experimental error. The constitution of the anion was confirmed by IR and Raman spectroscopy. The nitride‐oxide is stable up to 1000 °C, semiconducting (σ = 4.57 × 10–3 Ω–1 · cm–1 at RT), and paramagnetic down to 25 K. A Curie–Weiss analysis resulted in a magnetic moment of μ = 0.68 μB per rhenium atom.  相似文献   

11.
An Anionic Oxohydroxo Complex with Bismuth(III): Na6[Bi2O2(OH)6](OH)2 · 4H2O Colourless, plate‐like, air sensitive crystals of Na6[Bi2O2(OH)6](OH)2 · 4H2O are obtained by reaction of Bi2O3 or Bi(NO3)3 · 5H2O in conc. NaOH (58 wt %) at 200 °C followed by slow cooling to room temperature. The crystal structure (triclinic, P 1¯, a = 684.0(2), b = 759.8(2), c = 822.7(2) pm, α = 92.45(3)°, ß = 90.40(3)°, γ = 115.60(2)°, Z = 1, R1, wR2 (all data), 0, 042, 0, 076) contains dimeric, anionic complexes [Bi2O2(OH)6]4— with bismuth in an ψ1‐octahedral coordination of two oxo‐ and three hydroxo‐ligands. The thermal decomposition was investigated by DSC/TG or DTA/TG and high temperature X‐ray powder diffraction measurements. In the final of three steps the decomposition product is Na3BiO3.  相似文献   

12.
The energetic complex, [Co(2,4,3‐tpt)2(H2O)2] · 2NO3 ( 1 ) [2,4,3‐tpt = 3‐(2‐pyridyl)‐ 4‐(4'‐pyridyl)‐5‐(3′‐pyridyl)‐1H‐1,2,4‐triazole], was synthesized and characterized by single‐crystal X‐ray diffraction, thermogravimetric analyses, elemental analysis, X‐ray powder diffraction, and IR spectroscopy. The title complex is a 0D motif with a unit of [Co(2,4,3‐tpt)2(H2O)2]2+, whereas NO3 ions not only act as counter anions to balance the charge of the CoII cations, but also provide hydrogen bond interactions, which make the 0D motif into a 1D chain. Furthermore, the thermal decomposition of ammonium perchlorate (AP) with complex 1 was explored by differential scanning calorimetry (DSC) over the temperature range from 50–500 °C. AP is completely decomposed in a shorter time in the presence of complex 1 , and the decomposition heat of the mixture is 2.143 kJ g–1, significantly higher than pure AP. By Kissinger's method, the ratio of Ea/ln(A) is 11.87 for the mixture, which indicates that complex 1 shows good catalytic activity toward AP decomposition.  相似文献   

13.
A new protonated borophosphate (H3O)Mg(H2O)2[BP2O8]·H2O ( 1 ) was synthesized under mild hydrothermal conditions and characterized by single‐crystal X‐ray diffraction, FTIR spectroscopy and TG‐DTA. The compound crystallizes in the hexagonal system, space group P6(1)22 (No 178), a = 9.4462(7) Å, c = 15.759(2) Å, V = 1217.8(2) Å3, and Z = 6. There exist infinite helical $^1_\infty$ {[BP2O8]3–} ribbons built up from corner‐sharing PO4 and BO4 tetrahedra, which are connected by MgO4(H2O)2 leading to an infinite three‐dimensional open‐framework. The H3O+ ions are located at the free thread of the helical ribbons, whereas crystallized water occupy the channels of the helical ribbons. The dehydration of the compound occurs at a higher temperature which is presumably due to the anisotropic hydrogen bonds in the crystal structure. The luminescent properties of the compound were studied.  相似文献   

14.
Single‐crystal X‐ray diffraction analysis of [2,6‐(Me2NCH2)2C6H3]2SnF2 reveals that only one of the two dimethylaminomethyl groups of each pincer‐type ligands [2,6‐(CH2NMe2)2C6H3]? is coordinated to the tin atom at Sn‐N distances of 2.576(2) and 2.470(2) Å, inducing chirality of the latter. The tin atom exhibits a distorted octahedral trans(C,C)cis(N,N)cis(F,F) configuration. Extensive intra‐ and intermolecular C‐H···F hydrogen bonding is observed with the latter giving rise to formation of polymeric chains.  相似文献   

15.
The new zincophosphate of chemical formula [C6H10N2][ZnP2O8H2] · 0.6H2O was hydrothermally synthesized with p‐phenylenediamine as structure‐directing agent. The title compound crystallizes in the trigonal symmetry (proposed space group P3m1), where inorganic zincophosphate chains form layers due to the half occupancy of the unique crystallographic zinc site. The layers are separated from each other by p‐phenylenediammonium dications with hydrogen bonding scheme involving the ammonium protons that reveals a pillar‐like 3D structure aspect. The compound was characterized by powder X‐ray diffraction, multinuclear solid‐state NMR, scanning electron microscopy, chemical analysis, and thermogravimetric analysis.  相似文献   

16.
A new copper(II) phosphonatobenzenesulfonate incorporating 4,4′‐bipyridine (4,4′‐bipy) as auxiliary ligand has been discovered through systematic high‐throughput (HT) screening of the system Cu(NO3)2·3H2O/H2O3PC6H4SO3H/4,4′‐bipy using different solvents. The hydrothermal synthesis of [Cu(HO3PC6H4SO3)(C10H8N2)]·H2O ( 1 ) was further optimized by screening various copper(II) salts. The crystal structure of 1 was determined by single‐crystal X‐ray diffraction and unveiled the presence of isolated sixfold coordinated Jahn–Teller‐distorted Cu2+ ions. The isolated CuN2O4 octahedra are interconnected by phosphonate and sulfonate groups to form chains along the c‐axis. The organic groups, namely phenyl rings and 4,4′‐bipy molecules cross‐link the chains into a three‐dimensional framework. Water molecules are found in the narrow voids in the structure which are held by weak hydrogen bonds. Upon dehydration, the structure of 1 undergoes a phase transition, which was confirmed by TG measurements and temperature dependent X‐ray powder diffraction. The new structure of 1‐h was refined with Rietveld methods. Detailed inspection of the structure revealed the directional switching of the Jahn–Teller distortion upon de/rehydration. Weak ferro‐/ferrimagnetic interactions were observed by magnetic investigations of 1 , which switch to antiferromagnetic below 3.5 K. Compounds 1 and 1‐h are further characterized by thermogravimetric and elemental analysis as well as IR spectroscopy.  相似文献   

17.
The first organic amine‐templated holmium sulfate [C2N2H10]3[Ho2(SO4)6·2H2O] ( 1 ) has been synthesized solvothermally and has been structurally characterized by single‐crystal X‐ray diffraction studies, IR spectroscopic, thermogravimetric (TG) and inductivity coupled plasma (ICP) measurements. Crystal analyses of compound 1 showed a novel inorganic layer constructed from the zigzag and helical [–Ho–O–S–O–]n chains, both of the chains are connected by μ‐2 SO42– groups to form 10‐membered rings. The solvent plays an important role during the formation of 1 .  相似文献   

18.
The crystal structure of distrontium octacyanotungstate decahydrate, Sr2[W(CN)8] · 10H2O, was solved using X‐ray single crystal diffraction. The tungsten atom lies on a two fold axis. Eight cyanide anions create tetragonal antiprismatic coordination sphere of tungsten atom. The two edge‐sharing tetragonal antiprisms of [Sr(NC)3(OH2)5], create a dimer, [Sr2(CN)6(H2O)6(μ‐H2O)2], which lies on the inversion center. One symmetry independent water molecule is located in a void of 40 Å3. Vibrational (FT‐IR and FT‐Raman spectroscopic) behavior of main structural units is discussed. It was spectroscopically confirmed that the geometry of [W(CN)8]4– anion is slightly distorted from that corresponding to “free” anion. The number of observed bands is significantly lower than that expected for C2 point group.  相似文献   

19.
The new barium nitridoosmate oxide (Ba6O)(OsN3)2 was prepared by reacting elemental barium and osmium (3:1) in nitrogen at 815–830 °C. The crystal structure of (Ba6O)(OsN3)2 as determined by laboratory powder X‐ray diffraction ( , No 148: a=b=8.112(1) Å, c=17.390(1) Å, V=991.0(1) Å3, Z=3), consists of sheets of trigonal OsN3 units and trigonal‐antiprismatic Ba6O groups, and is structurally related to the “313 nitrides” AE3MN3 (AE=Ca, Sr, Ba, M=V–Co, Ga). Density functional calculations, using a hybrid functional, likewise indicate the existence of oxygen in the Ba6 polyhedra. The oxidation state 4+ of osmium is confirmed, both by the calculations and by XPS measurements. The bonding properties of the OsN35? units are analyzed and compared to the Raman spectrum. The compound is paramagnetic from room temperature down to T=10 K. Between room temperature and 100 K it obeys the Curie–Weiss law (μ=1.68 μB). (Ba6O)(OsN3)2 is semiconducting with a good electronic conductivity at room temperature (8.74×10?2 Ω?1 cm?1). Below 142 K the temperature dependence of the conductivity resembles that of a variable‐range hopping mechanism.  相似文献   

20.
Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)] · 7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)] · 4H2O (NDUS1), and one uranyl selenate‐selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L ‐cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4) Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two‐dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two‐dimensional uranyl selenate‐selenite sheets with a U/Se ratio of 1/2. In‐situ reaction of the L ‐cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L ‐cystine, balancing the charge of the sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号