首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Interfacial analysis is essential in many areas of interest, for instance within the ongoing research on environmentally friendly pretreatments of metal surfaces. While studies of the hidden interface between a metal and polymer top‐coat are of great importance, properties of a surface confined between two media are difficult to analyze in detail. Within the two parts of this study, ATR‐FTIR spectroscopy in the Kretschmann geometry is employed as the main analytical tool to study the interface between a thermo‐cured epoxy and aluminum pretreated with a silane film. The technique requires model systems based on thin metal films, but in contrast to most analytical techniques it permits the analysis of a hidden interface. Initial characterization of the silane film formed from a pH‐regulated γ‐APS and BTSE solution was conducted by both ATR‐FTIR Kretschmann and IRRAS spectroscopy. Absorption bands were obtained at 1250–900 cm?1, assigned to Si? O functionalities, and at ~1570 and ~1410 cm?1 assigned to acetate existing as a counter‐ion to γ‐APS. After application of the epoxy film, interfacial alterations were detected upon thermal curing including the densification of the epoxy film, the dehydration of aluminum and the formation of molecular epoxy reaction products. Few alterations could be assigned to the silane film. Calculated spectra derived from optical data can verify experimental results and aid data interpretation, and effects of metal oxidation of aluminum were confirmed by introducing gold as an additional substrate. The results showed that ATR‐FTIR Kretschmann spectroscopy is clearly a valuable tool for the study of hidden interfaces of stratified media. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The destabilization of the interface between a polymer and a metal surface is of considerable interest in several application areas, including the ongoing research on environmentally friendly pretreatments as a replacement for the Cr(VI)‐containing systems where the understanding of mechanisms and performance of a confined metal/polymer interface is of utmost importance. Processes at hidden interfaces are, however, difficult to analyze in detail and at relevant climatic conditions. This study has been divided in two parts, where the subject of Part I is the surface characterization by ATR‐FTIR Kretschmann and IRRAS spectroscopy of aluminum coated with an amino‐functional silane, and the interfacial analysis by ATR‐FTIR Kretschmann after further application of an epoxy film. This second part describes the interaction between the coated sample and an electrolyte. The analysis is performed by integrated in situ ATR‐FTIR Kretschmann and EIS, which requires model systems with evaporated metal films on an internal reflection element. Complementary analyses were also conducted on substrates in the absence of the metal film, and or in the absence of an epoxy top‐coat, respectively. Changes in the interfacial region were observed and assigned to the water uptake including swelling of the epoxy, and the formation of aluminium oxidation and hydration products. Complementary studies allowed the distinction between water uptake in the silane film and the epoxy, respectively, as well as reformations of the siloxane network. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号