首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of copper(II) cyanate with pyrazine leads to the formation of [Cu(NCO)2(pyrazine)]n ( 1 ), in which the Cu2+ cations are coordinated by two nitrogen atoms of the pyrazine ligands, as well as by four nitrogen atoms of the cyanate anions within a slightly distorted octahedral coordination. In the crystal structure the Cu2+ cations are connected by the pyrazine ligands into chains which are further linked by the cyanate anions through asymmetric μ‐1,1‐NCO coordination into layers. On heating compound 1 transforms quantitatively to copper(II) cyanate which decompose to elemental copper on further heating. No ligand deficent intermediates are observed. Magnetic measurements reval an antiferromagnetic ordering at lower temperatures mediated by the π‐system of the aromatic pyrazine ligand as well as net ferromagnetic interactions mediated by the μ‐1,1‐NCO bridging cyanato anions. A search in the Cambridge Crystal Structure Database shows that the terminal coordination mode in cyanato complexes as well as their azido and thiocyanato analogs is obviously energetically favored. In addition, a comparison of their symmetric and asymmetric end‐on (μ‐1,1) as well as end‐to‐end (μ‐1,3) bridging modes reveal interesting correlations.  相似文献   

2.
Reaction of zinc(II) thiocyanate with pyrazine, pyrimidine, pyridazine, and pyridine leads to the formation of new zinc(II) thiocyanato coordination compounds. In bis(isothiocyanato‐N)‐bis(μ2‐pyrazine‐N,N) zinc(II) ( 1 ) and bis(isothiocyanato‐N)‐bis(μ2‐pyrimidine‐N,N) zinc(II) ( 2 ) the zinc atoms are coordinated by four nitrogen atoms of the diazine ligands and two nitrogen atoms of the isothiocyanato anions within slightly distorted octahedra. The zinc atoms are connected by the diazine ligands into layers, which are further linked by weak intermolecular S ··· S interactions in 1 and by weak intermolecular C–H ··· S hydrogen bonding in 2 . In bis(isothiocyanato‐N)‐bis(pyridazine‐N) ( 3 ) discrete complexes are found, in which the zinc atoms are coordinated by two nitrogen atoms of the isothiocyanato ligands and two nitrogen atoms of the pyridazine ligands. The crystal structure of bis(isothiocyanato‐N)‐tetrakis(pyridine‐N) ( 4 ) is known and consists of discrete complexes, in which the zinc atoms are octahedrally coordinated by two thiocyanato anions and four pyridine molecules. Investigations using simultaneous differential thermoanalysis and thermogravimetry, X‐ray powder diffraction and IR spectroscopy prove that on heating, the ligand‐rich compounds 1 , 2 , and 3 decompose without the formation of ligand‐deficient intermediate phases. In contrast, compound 4 looses the pyridine ligands in two different steps, leading to the formation of the literature known ligand‐deficient compound bis(isothiocyanato‐N)‐bis(pyridine‐N) ( 5 ) as an intermediate. The crystal structure of compound 5 consists of tetrahedrally coordinated zinc atoms which are surrounded by two isothiocyanato anions and two pyridine ligands. The structures and the thermal reactivity are discussed and compared with this of related transition metal isothiocyanates with pyrazine, pyrimidine, pyridazine, and pyridine.  相似文献   

3.
Reaction of different ratios of manganese(II) thiocyanate with pyridazine in water at room temperature leads always to the formation of the pyridazine‐rich 1:4 compound (1:4 = ratio between metal and neutral co‐ligand) Mn(NCS)2(pyridazine)4 ( 1 ). In the crystal structure of 1 , the Mn2+ cations are coordinated by two nitrogen atoms of terminal N‐bonded thiocyanato anions and four nitrogen atoms of pyridazine ligands within slightly distorted octahedra. However, in one reaction single crystals of the new compound Mn3(NCS)6(pyridazine)4(H2O) · (pyridazine) ( 2 ) were obtained. In its crystal structure the manganese atoms are linked into chains by µ‐1, 3 and µ‐1, 1 bridging thiocyanato anions as well as bridging pyridazine ligands. Heating rate dependent DTA‐TG measurements of 1 reveal a multi‐step thermal decomposition, in which three new pyridazine‐deficient compounds of composition Mn(NCS)2(pyridazine)3 ( 3 ), Mn(NCS)2(pyridazine)2 ( 4 ) and Mn(NCS)2(pyridazine) ( 5‐Mn ) are formed. IR‐spectroscopic investigations indicate that on heating more condensed coordination networks with µ‐1, 3‐ and µ‐1, 1‐bridging thiocyanato anions has formed. Magnetic measurements show only Curie‐Weiss paramagnetism for compounds 1 , 3 and 4 , whereas in the 1:1 compound 5 an antiferromagnetic ordering is observed at TN = 14 K. Surprisingly, the most pyridazine deficient compound 5 transforms into 2 after storage for several weeks.  相似文献   

4.
Reaction of ZnII and CdII thiocyanate or selenocyanate with pyrazine leads to the formation of new ZnII and CdII coordination compounds. The structures of [Zn(NCSe)2(pyrazine)2]n ( 1A ), [Cd(NCS)2(pyrazine)2]n ( 2A ) and [Cd(NCSe)2(pyrazine)2]n ( 3A ) consist of octahedrally coordinated metal cations which are surrounded by two terminal N‐bonded anions and two μ2‐bridging pyrazine molecules. The metal cations are connected via the pyrazine ligands into layers, which are further linked by weak intermolecular S···S respectively Se···Se interactions. Investigations on the thermal degradation behavior of 1A , 2A , and 3A using simultaneous differential thermoanalysis and thermogravimetry as well as X‐ray powder diffraction, IR‐ and Raman spectroscopy prove that on heating, the pyrazine‐rich compound 1A decomposes in one step into zinc selenocyanate without the formation of a pyrazine‐deficient intermediate. In contrast, for compounds 2A and 3A a stepwise decomposition is observed, leading to the formation of the pyrazine‐deficient compounds [Cd(NCS)2(pyrazine)]n ( 2B‐I and 2B‐II ) and [Cd(NCSe)2(pyrazine)]n ( 3B ) as intermediates. The structures and the thermal reactivity are discussed and compared with that of related transition metal thiocyanates and selenocyanates with pyridine as N‐donor ligand.  相似文献   

5.
Two new transition metal dicyanamide complexes [Co2(tppz)(dca)4]·CH3CN ( 1 ) [tppz=tetra(2‐pyridyl)pyrazine, dca=dicyanamide] and [Co(tptz)(dca)(H2O)](dca) ( 2 ) [tptz=2,4,6‐tri(2‐pyridyl)‐1,3,5‐triazine] were synthesized and characterized by single crystal X‐ray diffraction analysis. In 1 each cobalt(II) atom is coordinated to three dca anions and one tppz molecule to form a distorted octahedral geometry, the neigbour two cobalt(II) atoms are bridged by one tppz ligand to form a dimer, then the cobalt(II) atoms in each dimer are joined together to form a ladder chain structure. In 2 the coordination geometry around the central metal is also distorted octahedral, each cobalt(II) atom is coordinated by two dca anions, one tptz molecule and one water ligand to form a cationic part, and the cationic part is linked with the free dca anions via the electrostatic attraction to give an infinite chain structure. Magnetic susceptibility measurement in the range of 2–300 K indicates that there are antiferromagnetic couplings between adjacent metal ions in 1 (T>29 K, (=?9.78 K, C=4.92 cm3·K·mol?1) and ferromagnetic couplings in 2 (T>150 K, (=7.97 K, C=2.59 cm3·K·mol?1) respectively.  相似文献   

6.
Reaction of FeCl2?4 H2O with KNCSe and pyridine in ethanol leads to the formation of the discrete complex [Fe(NCSe)2(pyridine)4] ( 1 ) in which the FeII cations are coordinated by two N‐terminal‐bonded selenocyanato anions and four pyridine co‐ligands. Thermal treatment of compound 1 enforces the removal of half of the co‐ligands leading to the formation of a ligand‐deficient (lacking on neutral co‐ligands) intermediate of composition [Fe(NCSe)2(pyridine)2]n ( 2 ) to which we have found no access in the liquid phase. Compound 2 is obtained only as a microcrystalline powder, but it is isotypic to [Cd(NCSe)2(pyridine)2]n and therefore, its structure was determined by Rietveld refinement. In its crystal structure the metal cations are coordinated by two pyridine ligands and four selenocyanato anions and are linked into chains by μ‐1,3 bridging anionic ligands. Magnetic measurements on compound 1 show only paramagnetic behavior, whereas for compound 2 an unexpected magnetic behavior is found, which to the best of our knowledge was never observed before for a iron(II) homospin compound. In this compound metamagnetism and single‐chain magnetic behavior coexist. The metamagnetic transition between the antiferromagnetically ordered phase and a field‐induced ferromagnetic phase of the high‐spin iron(II) spin carriers is observed at a transition field HC of 1300 Oe and the single‐chain magnetic behavior is characterized by a blocking temperature TB, estimated to be about 5 K.  相似文献   

7.
We prepared single crystals of basic copper formate Cu2(OH)3HCO2 ( 1) by hydrolysis of formate anions in an aqueous solution of copper formate. X‐ray structure analysis showed that this material has a two‐dimensional triangular lattice network with S=1/2. The temperature dependence of magnetic susceptibility revealed antiferromagnetic ordering at 5.4 K. A spin‐flop transition was observed at about 20 kOe at 2 K, thereby indicating metamagnetic‐like behavior. The saturation magnetization was almost one‐half of the theoretical value at 2 K under 70 kOe. The magnetic behaviors of 1 were also discussed with regard to its crystal structure. The preparation method presented herein is convenient and available for single crystal growth of metal hydroxide derivatives with various anions.  相似文献   

8.
Reaction of iron(II) thiocyanate with 4,4‐bipyridine (bipy) in methanol leads to the formation of three new solvates of different composition depending on the reaction conditions: At room temperature two new ligand‐rich 1:2 (1:2 = ratio between metal and N‐donor ligand) polymorphic forms [Fe(NCS)2(bipy)2 · 2MeOH]n ( 1I ) and [Fe(NCS)2(bipy)(MeOH)2 · (bipy)]n ( 1II ) are obtained, whereas solvothermal conditions leads to the formation of the new ligand‐deficient 1:1 compound [{Fe(NCS)2(bipy)(MeOH)}2]n ( 2 ). All crystal structures were determined by X‐ray single crystal structure analysis. In the crystal structure of modification 1I the metal atoms are coordinated by four bridging bipy ligands, which connect them into layers. The methanol molecules occupy voids in the structure. Compared to 1I in modification 1II the crystal structure contains of linear Fe–bipy–Fe chains, which are further connected by hydrogen bonds between coordinating MeOH and noncoordinated bipy ligands into layers. The ligand‐deficient 1:1 compound 2 shows a completely different coordination topology with linear Fe–bipy–Fe chains, which are connected by coordinating methanol molecules into double‐chains. In all compounds the thiocyanato anions are terminal N‐bonded to the metal atoms. Investigation of the thermal behavior of compound 1I shows a two‐step decomposition, in which ligand‐deficient intermediates are formed. Magnetic measurements on 1I reveal Curie–Weiss paramagnetism with increasing antiferromagnetic interactions on cooling.  相似文献   

9.
Reaction of nickel(II) thiocyanate and pyridazine (pdz) as organic spacer ligand leads to the formation of the ligand‐rich 1:2 (1:2 = metal to ligand ratio) trinuclear nickel(II) complex of composition [Ni3(NCS)6(pdz)6]. Depending on the reaction solvent, different polymorphic modifications are obtained: Reaction in acetonitrile leads to the formation of the new modification 1I and reaction in ethanol leads to the formation of modification 1II reported recently. In their crystal structures discrete [Ni3(NCS)6(pdz)6] units are found, in which each of the Ni2+ cations exhibits a NiN6 distorted octahedral arrangement. The central Ni2+ cation is coordinated by four bridging pdz ligands and two thiocyanato anions in trans positions. Both thiocyanato anions exhibit the end‐on bridging mode. The peripheral Ni2+ cations are bridged by one thiocyanato anion and by two pdz ligands with the central Ni2+ cation. Further they are coordinated by two terminal N‐bonded thiocyanato anions and one terminal N‐bonded pdz ligand. The structure of 1I was determined by X‐ray single crystal structure investigation and emphasized by infrared spectroscopy. Magnetic measurements revealed a quasi Curie behavior with net ferromagnetic interactions for 1I and net antiferromagnetic interactions for 1II . Solvent‐mediated conversion experiments clearly show that modification 1I represents the thermodynamic most stable form at room temperature and that modification 1II is metastable. On thermal decomposition, both modification transform quantitatively in a new ligand‐deficient intermediate. Elemental analysis revealed a 3:4 compound of composition [Ni3(NCS)6(pdz)4]. A structure model supported by IR spectroscopic investigations was assumed, in which three coordination modes of the thiocyanato anion exist, resulting in a 2D polymeric network.  相似文献   

10.
Three new transition metal tricyanomethanide complexes [Cu(dpyam)(tcm)2] ( 1 ), [Cu(dpyam)(tcm)(OAc)] ( 2 ) and Zn(dpyam)2(tcm)2 ( 3 ) were synthesized and characterized by single crystal X‐ray diffraction analysis. In 1 each copper(II) atom is coordinated to three tcm anions and one dpyam molecule to form a square pyramide geometry. In 2 the coordination geometry around the central metal is also square pyramidal, and each copper atom is surrounded by two tcm anions, one dpyam ligand and one OAc. Both 1 and 2 display a µ1,5‐tcm bridged infinite chain structure. In 3 each zinc(II) atom is coordinated by two tcm anions and two dpyam molecules to form a distorted octahedral geometry. Different from the former two complexes, 3 shows a mononuclear structure. Magnetic susceptibility measurement in the range 2–300 K indicates that there are weak antiferromagnetic couplings between adjacent copper(II) ions in 1 (J=?0.03 cm?1) and 2 (J=?0.11 cm?1) respectively.  相似文献   

11.
Three coordination compounds [Mn3(dmb)6(H2O)4(4, 4′‐bpy)3(EtOH)]n ( 1 ) and [M(dmb)2(pyz)2 (H2O)2] [MII = Co ( 2 ), Mn ( 3 )] (Hdmb = 2, 6‐dimethoxybenzoic acid, 4, 4′‐bpy = 4, 4′‐bipyridine, pyz = pyrazine) were synthesized and characterized by single‐crystal X‐ray diffraction analysis. Compound 1 consists of infinite 1D polymeric chains, in which the metal entities are bridged by 4, 4′‐bpy ligands. There are four crystallographically independent MnII atoms in the linear chain with different coordination modes, which is only scarcely reported for linear polymers. The isostructural crystals of 2 and 3 are composed of neutral mononuclear complexes. In crystal the complexes are combined into chains by intermolecular O–H ··· N hydrogen bonds and π–π interactions between antiparallel pyrazine molecules.  相似文献   

12.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

13.
Two new Keggin templated supramolecular compounds, [Zn2(H2biim)5(SiM12O40)] · 4H2O [M = W ( 1 ), Mo ( 2 )] (H2biim = 2, 2′‐biimidazole), were synthesized under hydrothermal conditions by using the ligand 2, 2′‐biimidazole. They were characterized by single‐crystal X‐ray diffraction, elemental analyses, IR and photoluminescence spectroscopy as well as cyclic voltammetry. The two isostructural compounds are constructed by two discrete supramolecular moieties: the inorganic chains consist of Keggin anions and metal‐organic chains constructed by [Zn2(H2biim)5]4+ subunits. In the dinuclear [Zn2(H2biim)5]4+ subunit, the H2biim ligands exhibit a dual role, chelating and linking. The metal‐organic chains further construct a 3D supramolecular framework with channels, in which the Keggin‐based inorganic chains are accommodated. The electrochemical behaviors of compounds 1 and 2 bulk‐modified carbon paste electrodes ( 1 ‐CPE, 2 ‐CPE) were studied.  相似文献   

14.
. The complex Hg4(L2)2(NO3)4 ( 1 ) (L2 = morpholin‐4‐ylpyridin‐2‐ylmethyleneamine) has been synthesized and characterized by CHN analysis, IR, and UV/Vis spectroscopy. The crystal structure of 1 was determined using single‐crystal X‐ray diffraction. The crystal structure of 1 contains four mercury atoms, four nitrate anions (two terminal and two bridge ones) and two L2 ligand molecules. A chair shape, six‐membered ring is formed with the sequence OHgHgOHgHg built from Hg–Hg dumbbells and oxygen atoms from the nitrate co‐ligands. In the crystal structure, the asymmetric unit of the compound is built up by one‐half of the molecule. It contains the Hg22+ moiety with a mercury–mercury bonded core, in which one diimine ligand is coordinated to one of the mercury atoms. The nitrate anions act as anisobidentate and bidentate ligands.  相似文献   

15.
Reactions of lead(Ⅱ) nitrate or perchlorate with bis(3,5-dimethylpyrazolyl)methane (dmpzm), produced two new Pb(Ⅱ) chelated complexes [Pb(dmpzm)2X2] (X=NO3^- 1, ClO4^- 2). Both compounds were structurally characterized by elemental analysis, IR spectroscopy, thermal analysis, and single crystal X-ray diffraction. Both compounds are mononuclear with a distorted square antiprismatic PbN4O4 coordination geometry incorporating a pair of O,O'-bidentate anions and N,N'-bidentate dmpzm ligands. In the crystals of 1 or 2, the methyl or methylene groups of dmpzm ligand interact with the oxygen atoms of nitrates or perchlorates to afford intra- and intermolecular hydrogen bonding, thereby forming a two-dimensional network 1 or a three-dimensional structure 2.  相似文献   

16.
The synthesis, crystal structure, and biological activity of new bis‐cyclometalated compounds [M(ptpy)2(4‐chloro‐2‐methyl‐1,8‐naphthyridine)]PF6 [M = Rh ( 1 ); M = Ir ( 2 ); ptpy = 2‐(p‐tolyl)pyridinato] and [M(ptpy)2(2‐methyl‐1,8‐naphthyridine)]PF6 [M = Rh ( 3 ); M = Ir ( 4 )] are described. The new compounds were prepared by the reaction of [{M(μ‐Cl)(ptpy)2}2] (M = Rh, Ir) with the corresponding naphthyridine ligands. The molecular structures of compounds 1 , 3 , and 4 were confirmed by single‐crystal X‐ray diffraction studies.  相似文献   

17.
A novel 1D copper(II) helical chain is constructed through the connection of tetranuclear copper(II) units [Cu4(L)(Py)4] (H8L=N,N′‐(BINOL‐3,3′‐dicarboxyl)‐disalicylhydrazide, where BINOL is 1,1′‐binaphthalenyl‐2,2′‐diol, py=pyridine) by weak coordination‐driven self‐assembly, and characterized by IR, single crystal X‐ray diffraction, thermogravimetric analysis, and X‐ray power diffraction analysis. Interestingly, the helical chains are packed in an alternating left‐(M) and right‐handed (P) chirality, the orientation of the helices was determined by the axial chirality of the ligand. The complex shows antiferromagnetic interactions between the copper centers.  相似文献   

18.
In order to search for new anionic architectures and develop useful organic–inorganic hybrid materials in halometallate systems, two new crystalline organic–inorganic hybrid compounds have been prepared, i.e. catena‐poly[triethyl(2‐hydroxyethyl)azanium [[bromidocadmate(II)]‐di‐μ‐bromido]], {(C8H20NO)[CdBr3]}n, (1), and catena‐poly[triethyl(2‐hydroxyethyl)azanium [[bromidomercurate(II)]‐di‐μ‐bromido]], {(C8H20NO)[HgBr3]}n, (2), and the structures determined by X‐ray diffraction analysis. The compounds are isostructural, crystallizing in the space group P21/n. The metal centres are five‐coordinated by bromide anions, giving a slightly distorted trigonal–bipyramidal geometry. The crystal structures consist of one‐dimensional edge‐sharing chains of MBr5 trigonal bipyramids, between which triethylcholine counter‐cations are intercalated. O—H...Br hydrogen‐bonding interactions are present between the cations and anions.  相似文献   

19.
The synthesis, characterization and crystal structures of substituted imidazolate bridged binuclear copper(II) complexes, [Cu2(dien)2(L)](ClO4)3, where dien = diethylenetriamine, L = imidazolate (im) ( 1 ), 2‐methylimidazolate (mim) ( 2 ) and benzimidazolate (bim) ( 3 ), are reported. The copper(II) ions of 1 — 3 posses a square planar coordination environment with dien coordinating as a tridentate ligand and the fourth position being occupied by a nitrogen atom of the bridging μ‐imidazolato group. In all three compounds the tendency to form additional long apical bonds at the copper(II) ions to the oxygen atoms of the perchlorate anions is observed. Temperature depended susceptibility data of polycrystalline samples reveal an antiferromagnetic coupling of the copper(II) atoms in 1 — 3 with J = —63.8, —75.4 and —36.8 cm—1, respectively. Significant changes for these coupling constants could not be observed for measurements on frozen aqueous solutions. ESR spectra for solids and frozen solutions are consistent with intramolecular antiferromagnetic exchange interaction between the metal ions. From the data reported it can be concluded that the predominate mechanism for transmitting exchange coupling through the imidazolate bridge is due to a σ exchange pathways.  相似文献   

20.
XIE  Yong-Shu ZHU  Yu 等 《中国化学》2002,20(3):292-295
A mixed-ligand copper(Ⅱ) complex[Cu2(phen)2(HL^1)2]-(ClO4)2(1) was synthesized.X-ray analyses reveal that 1 has a bis(μ2-phenoxo)-bridged dicopper(Ⅱ) structure.2D hydrogen-bonded network is formed utilizing the N-H,O-H and C-H groups of the (HL^1) ligands (H2L^1=N-(2-hydroxybenzyl)ethanolamine),the C-H groups of the phenanthrolines and the perchlorate anions.Variable temperature magnetic properties of 1 have shown comparatively weak antiferromagnetic interactions with respect to the bridge angles, which have been ascribed to the unfavorable overlaps of the magnetic orbitals fo the highly distorted copper coordination polyhedra and the pyramidal distortions at the phenoxo oxygen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号