首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electron impact K‐shell ionization (EIKSI) cross sections on 18 atomic targets, with the atomic numbers 2 ≤ Z ≤ 92, are calculated using a modified version of the binary encounter approximation (BEA) model. The modified BEA (MBEA), which incorporates both ionic and relativistic corrections and is simpler in application than other existing models, is found to be immensely successful in describing the EIKSI data up to the incident energy of 1 GeV. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

2.
3.
4.
5.
Phosphate esters are important commercial products that have been used both as flame retardants and as plasticizers. To analyze these compounds by gas chromatographic mass spectrometry, it is important to understand the mass spectra of these compounds using various ionization modes. This paper is a systematic overview of the electron impact (EI), electron capture negative ionization (ECNI) and positive chemical ionization (PCI) mass spectra of 13 organophosphate esters. These data are useful for developing and optimizing analytical measurements. The EI spectra of these 13 compounds are dominated by ions such as H4PO4+, (M ? Cl)+, (M ? CH2Cl)+ or (M)+ depending on specific chemical structures. The ECNI spectra are generally dominated by (M ? R)?. The PCI spectra are mainly dominated by the protonated molecular ion (M + H)+. The branching of the alkyl substituents, the halogenation of the substituents and, for aromatic phosphate esters, ortho alkylation of the ring are all significant factors controlling the details of the fragmentation processes. EI provides the best sensitivity for the quantitative measurement of these compounds, but PCI and ECNI both have considerable qualitative selectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
 Results from measurements and calculations of relative L- and M-shell ionization cross sections by electron impact are presented. Measurements were performed for elements Te, Au and Bi on an electron microprobe with specimens consisting of extremely thin films of the studied element deposited on thin, self-supporting, carbon layers. The relative variation of the ionization cross section was obtained by counting the number of characteristic X-rays from the considered element and shell, for varying incident electron energies, from the ionization energy up to 40 keV. Measured data were corrected to account for the energy-dependent spread of the electron beam within the active film and for the ionization due to the electrons backscattered from the carbon layer, using Monte Carlo simulation. Cross sections were evaluated in the Born approximation using an optical-data model with numerically evaluated dipole photoelectric cross sections. Calculated ionization cross section were converted to vacancy production cross sections, which can be directly compared with our experimental data.  相似文献   

7.
The mass spectral signatures of airborne bacteria were measured and analyzed in cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. Suspensions of cultured cells in pure water were sprayed into the aerosol and cloud chambers forming an aerosol which consisted of intact cells, cell fragments and residual particles from the agar medium in which the bacteria were cultured. The aerosol particles were analyzed with a high‐resolution time‐of‐flight aerosol mass spectrometer equipped with a newly developed PM2.5 aerodynamic lens. Positive matrix factorization (PMF) using the multilinear engine (ME‐2) source apportionment was applied to deconvolve the bacteria and agar mass spectral signatures. The bacteria mass fraction contributed between 75 and 95% depending on the aerosol generation, with the remaining mass attributed to agar. We present mass spectra of Pseudomonas syringae and Pseudomonas fluorescens bacteria typical for ice‐nucleation active bacteria in the atmosphere to facilitate the distinction of airborne bacteria from other constituents in ambient aerosol, e.g. by PMF/ME‐2 source apportionment analyses. Nitrogen‐containing ions were the most salient feature of the bacteria mass spectra, and a combination of C4H8N+ (m/z 70) and C5H12N+ (m/z 86) may be used as marker ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this work we use the unitarized distorted wave method to study the effect of multi‐channel coupling on the calculated electronic excitation cross sections in H2. Specifically, such an effect for electronic excitations leading to the excited states b3∑, a3∑, and c3u for incident energies varying from 15 to 60 eV is studied. Our results have shown that converged cross sections can be obtained with the inclusion of only triplet intermediate states, except for energies near the excitation thresholds, where the inclusion of singlet intermediate states is important. Also, convergence improves with increasing energies for all excitations considered. Comparison of our calculated cross sections with available experimental and other theoretical results is encouraging. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

9.
Fragmentation of the pyridine ring upon K‐shell excitation/ionization has been studied with gaseous 2‐, 3‐ and 4‐methylpyridine by the electron‐impact method. Ab initio molecular orbital (MO) calculations were also carried out to explore electronic states correlating with specific fragments. Some specific fragmentation channels were identified from the ionic fragments enhanced characteristically at the N 1s edge. Yields of the C2HN+ and C5H5+/C5H6+ ions show that the fission of the N? C2 and C4? C5/C5? C6 bonds of the ring is likely to occur after the N 1s excitation and ionization. Ab initio MO calculations for the 2‐methylpyridine molecule indicate that the dissociation channels to produce these ions are only accessible through the excited states of the parent molecular dication, which can be formed by Auger decays after the N 1s ionization. Fragment ions via hydrogen rearrangement are produced as well, but the rearrangement is not a phenomenon specific to the K‐shell excitation/ionization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
An intermolecular phenolic hydroxy methylation occurring between chiral N,N‘-bis(2-hydroxyphenyl)-2,2-dimethyl-1,3-dioxolane-4,5-dicarbamide and co-crystallized methanol under electron impact ionization conditions was observed. The result was confirmed by X-ray diffraction structural ananlysis of a co-crystalline of(R,R)-enantiomer and methanol.  相似文献   

11.
Quantification of surface‐ and bulk‐analytical methods, e.g. Auger‐electron spectroscopy (AES), X‐ray photoelectron spectroscopy (XPS), electron‐probe microanalysis (EPMA), and analytical electron microscopy (AEM), requires knowledge of reliable elastic‐scattering cross sections for describing electron transport in solids. Cross sections for elastic scattering of electrons and positrons by atoms, ions, and molecules can be calculated with the recently developed code ELSEPA (Elastic Scattering of Electrons and Positrons by Atoms) for kinetic energies of the projectile from 10 eV to 50 eV. These calculations can be made after appropriate selection of the basic input parameters: electron‐density distribution, a model for the nuclear‐charge distribution, and a model for the electron‐exchange potential (the latter option applies only to scattering of electrons). Additionally, the correlation‐polarization potential and an imaginary absorption potential can be considered in the calculations. We report comparisons of calculated differential elastic‐scattering cross sections (DCSs) for silicon and gold at selected energies (500 eV, 5 keV, 30 keV) relevant to AES, XPS, EPMA, and AEM, and at 100 MeV as a limiting case. The DCSs for electrons and positrons differ considerably, particularly for medium‐ and high‐atomic‐number elements and for kinetic energies below about 5 keV. The DCSs for positrons are always monotonically decreasing functions of the scattering angle, while the DCSs for electrons have a diffraction‐like structure with several minima and maxima. A significant influence of the electron‐exchange correction is observed at 500 eV. The correlation‐polarization correction is significant for small scattering angles at 500 eV, while the absorption correction is important at energies below about 10 keV. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Atomic shells defined as wells of the one‐electron potential $\nabla^{2}\sqrt{\rho}/2\sqrt{\rho}$ bounded by successive maxima of this electron density function give reasonable electron numbers for the occupation of shells with empty d orbitals. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 324–331, 2001  相似文献   

13.
We present absolute partial electron impact ionization cross sections for ethylene in the electron energy range between threshold and 1000 eV measured with a two sector field double focusing mass spectrometer. Ion kinetic energy distribution functions have been measured at all electron energies by applying a deflection field method. Multiplication of the measured relative cross sections by the appropriately determined discrimination factors lead to accurate relative partial cross sections. Normalization of the sum of the relative partial cross sections to an absolute total cross section gives absolute partial cross section values. The initial kinetic energy distributions of several fragment ions show the presence of two or more contributions that exhibit different electron energy dependencies. Differential cross sections with respect to the initial kinetic energy of the ions are provided and are related to specific ion production channels. The electron threshold energies for the direct and numerous other dissociative ionization channels are determined by quantum chemical calculation and these allow the determination of the total kinetic energy release and the electron energy loss for the most prominent dissociative ionization channels.  相似文献   

14.
A new type of electron ionization LC‐MS with supersonic molecular beams (EI‐LC‐MS with SMB) is described. This system and its operational methods are based on pneumatic spray formation of the LC liquid flow in a heated spray vaporization chamber, full sample thermal vaporization and subsequent electron ionization of vibrationally cold molecules in supersonic molecular beams. The vaporized sample compounds are transferred into a supersonic nozzle via a flow restrictor capillary. Consequently, while the pneumatic spray is formed and vaporized at above atmospheric pressure the supersonic nozzle backing pressure is about 0.15 Bar for the formation of supersonic molecular beams with vibrationally cold sample molecules without cluster formation with the solvent vapor. The sample compounds are ionized in a fly‐though EI ion source as vibrationally cold molecules in the SMB, resulting in ‘Cold EI’ (EI of vibrationally cold molecules) mass spectra that exhibit the standard EI fragments combined with enhanced molecular ions. We evaluated the EI‐LC‐MS with SMB system and demonstrated its effectiveness in NIST library sample identification which is complemented with the availability of enhanced molecular ions. The EI‐LC‐MS with SMB system is characterized by linear response of five orders of magnitude and uniform compound independent response including for non‐polar compounds. This feature improves sample quantitation that can be approximated without compound specific calibration. Cold EI, like EI, is free from ion suppression and/or enhancement effects (that plague ESI and/or APCI) which facilitate faster LC separation because full separation is not essential. The absence of ion suppression effects enables the exploration of fast flow injection MS‐MS as an alternative to lengthy LC‐MS analysis. These features are demonstrated in a few examples, and the analysis of the main ingredients of Cannabis on a few Cannabis flower extracts is demonstrated. Finally, the advantages of EI‐LC‐MS with SMB are listed and discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
X‐ray fluorescence measurements for O‐containing [polyethylene oxide, polyvinyl alcohol, polyvinyl methyl ether], CO‐containing [polyvinyl methyl ketone, polyethylene terephthalate], N‐containing [poly‐4‐vinylpyridine (P4VP), polyaniline oligomer (PAO)], and S‐containing [polyphenylene sulfide] substances are presented. Carbon Kα X‐ray emission spectra (XES) and X‐ray photoelectron spectra (XPS) are compared with our DFT calculations performed with the Amsterdam density functional (ADF) program. The combined analysis of valence XPS and carbon Kα XES allows us to determine the individual contributions from pσ‐ and pπ‐bonding molecular orbitals of the polymers. The ΔSCF calculations yield the accurate C1s core‐electron binding energies (CEBEs) for all carbon sites of the organic compound. We calculate all CEBEs of the model molecules using the ΔE KS approach. Our simulated C1s photoelectron and C Kα emission spectra are in good agreement with our measurements. We also obtain WD (work function and the other energies) values for the polymers and PAO from the difference between calculated (gas‐phase) and measured (solid) CEBE values. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 162–172, 2007  相似文献   

16.
蔡理胜  沈伟健  王正萍  张睿  丁涛  余可垚  王红  张文俊  龚玉霞 《色谱》2017,35(11):1177-1183
分别采用电子轰击电离(EI)源和正化学电离(PCI)源两种离子源技术建立了气相色谱-质谱(GC-MS)同时测定白菜和苹果中苯丁锡、三苯锡和三环锡含量的方法,并对这两种方法进行了比较。样品经氢溴酸消解、丙酮-正己烷(1∶2,v/v)提取,四乙基硼化钠衍生后用Florisil固相萃取柱净化,分别在EI源和PCI源下以选择离子监测模式进行测定。结果表明,方法的检出限(S/N=3)分别为0.01~0.05 mg/kg(EI源)和0.01~0.02 mg/kg(PCI源),定量限(S/N=10)分别为0.03~0.16 mg/kg(EI源)和0.02~0.06 mg/kg(PCI源)。三苯锡、三环锡和苯丁锡分别在各自的线性范围内线性关系良好,相关系数(r~2)≥0.997。在50、100、200μg/kg 3个添加水平下,采用GC-EI/MS和GC-PCI/MS时,阴性样品中3种有机锡的平均回收率分别为59.24%~97.36%(苹果)、50.54%~94.54%(白菜)和65.38%~95.86%(苹果)、62.56%~90.44%(白菜),相对标准偏差(RSD)均不超过6.9%(n=6)。该方法简单、灵敏,PCI源的选择性优于EI源,两种方法可以相互结合提高检测结果的可靠性。  相似文献   

17.
Based on the surface‐area‐difference model, the formation enthalpies and the formation Gibbs free energies of bimetallic nanoparticles are calculated by considering size and shape effects. Composition–critical size diagrams were graphed for bulk immiscible bimetallic nanoparticles with the developed model. The results reveal that both the formation enthalpy and formation Gibbs free energy decrease with the decrease of particle size. The effect of rising temperature is similar to the diminishing of particle size on reducing the formation Gibbs free energy. Contrary to the positive formation enthalpy of the bulk immiscible system, a negative formation enthalpy is obtained when the particles are smaller than a critical size. With the decrease of size, the alloying process first takes place in the dilute solute regions, then broadens to the dense solute regions and finally, particles with all compositions can be alloyed. The composition–critical size diagram is classified into three regions by the critical size curves with shape factors of 1 and 1.49, that is, the non‐alloying region, alloying region and possible alloying region. The model predictions correspond well with experimental evidences and computer simulation results for Cu–Ag, Au–Ni, Ag–Pt and Au–Pt systems.  相似文献   

18.
Absolute photoionization cross sections of the molecules 2‐ethylfuran, 2‐acetylfuran and furfural, including partial ionization cross sections for the dissociative ionized fragments, are measured for the first time. These measurements are important because they allow fuel quantification via photoionization mass spectrometry and the development of quantitative kinetic modeling for the complex combustion of potential fuels. The experiments are carried out using synchrotron photoionization mass spectrometry with an orthogonal time‐of‐flight spectrometer used for mass analysis at the Advanced Light Source of Lawrence Berkeley National Laboratory. The CBS‐QB3 calculations of adiabatic ionization energies and appearance energies agree well with the experimental results. Several bond dissociation energies are also derived and presented. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Pharmaceuticals require careful and precise determination of their impurities that might harm the user upon consumption. Although today, the most common technique for impurities identification is liquid chromatography‐mass spectrometry (LC‐MS/MS), it has several downsides due to the nature of the ionization method. Also, the analyses in many cases are targeted thus despite being present, some of the compounds will not be revealed. In this paper, we propose and show a new method for untargeted analysis and identification of impurities in active pharmaceutical ingredients (APIs). The instrument used for these analyses is a novel electron ionization (EI) LC‐MS with supersonic molecular beams (SMB). The EI‐LC‐MS‐SMB was implemented for analyses of several drug samples spiked with an impurity. The instrument provides EI mass spectra with enhanced molecular ions, named Cold EI, which increases the identification probabilities when the compound is identified with the aid of an EI library like National Institute of Standards and Technology (NIST). We analyzed ibuprofen and its impurities, and both the API and the expected impurity were identified with names and structures by the NIST library. Moreover, other unexpected impurities were found and identified proving the ability of the EI‐LC‐MS‐SMB system for truly untargeted analysis. The results show a broad dynamic range of four orders of magnitude at the same run with a signal‐to‐noise ratio of over 10 000 for the API and almost uniform response.  相似文献   

20.
开展了动物内脏中14种酞酸酯类(PAEs)环境激素残留的气相色谱-电子轰击离子源/质谱(GC-EI/MS)的分析方法研究。优化与选择了动物内脏样品的前处理条件,动物内脏样品经正己烷/二氯甲烷(1/1,v/v)混合提取剂超声提取、Florisil硅藻土固相萃取柱净化与乙酸乙酯/正己烷(2/3,v/v)混合洗脱剂洗脱和浓缩后,以邻苯二甲酸二苯基酯(DPhP)为内标物,采用GC-EI/MS的选择离子监测方式(SIM)进行定性和定量分析。当猪肝样品的加标浓度水平为100、200、400 μg/kg时,加标回收率为:60%~110%,相对标准偏差为:0.78%~10.3%;除邻苯二甲酸二(2-甲氧基乙基)酯(DMEP)与邻苯二甲酸二(2-乙氧基乙基)酯(DEEP)的检测限(MDL)分别为3.30与2.25 μg/kg外,其余的12种PAEs的MDL ≦ 1.74 μg/kg;线性范围为50 ~ 800 μg/kg,相关系数都大于0.9994。此分析方法成功地应用于6种动物内脏中14种痕量PAEs残留的分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号