首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Samarium powder was applied as a catalyst for single electron transfer‐living radical polymerization (SET‐LRP) of acrylonitrile (AN) in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) with 2‐bromopropionitrile as initiator and N,N,N,N′‐tetramethylethylenediamine as ligand. First‐order kinetics of polymerization with respect to the monomer concentration, linear increase of the molecular weight with monomer conversion, and the highly syndiotactic polyacrylonitrile (PAN) obtained indicate that the SET‐LRP of AN could simultaneously control molecular weight and tacticity of PAN. An increase in syndiotacticity of PAN obtained in HFIP was observed compared with that obtained by SET‐LRP in N,‐N‐dimethylformamide (DMF). The syndiotacticity markedly increased with the HFIP volume. The syndiotacticity of PAN prepared by SET‐LRP of AN using Sm powder as catalyst in DMF was higher than that prepared with Cu powder as catalyst. The increase in syndiotacticity of PAN with Sm content was more pronounced than the increase in its isotacticity. The block copolymer PAN‐b‐polymethyl methacrylate (52,310 molecular weight and 1.34 polydispersity) was successfully prepared. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Single electron transfer‐living radical polymerization (SET‐LRP) has been used as a new technique for the synthesis of polyacrylonitrile (PAN) catalyzed by Cu(0) powder with carbon tetrachloride (CCl4) as the initiator and hexamethylenetetramine (HMTA) as the ligand in N,N‐dimethylformamide (DMF) or mixed solvent. Well‐controlled polymerization has been achieved as evidenced by a linear increase of molecular weight with respect to monomer conversion as well as narrow molecular weight distribution. Kinetics data of the polymerizations at both ambient temperature and elevated temperature demonstrate living/controlled feature. An increase in the concentration of ligand yields a higher monomer conversion within the same time frame and almost no polymerization occurs in the absence of ligand due to the poor disproportionation reaction of Cu(I). The reaction rate exhibits an increase with the increase of the amount of catalyst Cu(0)/HMTA. Better control on the molecular weight distribution has been produced with the addition of CuCl2. In the presence of more polar solvent water, it is observed that there is a rapid increase in the polymerization rate. The effect of initiator on the polymerization is also preliminarily investigated. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Isobornyl methacrylate (IBMA), a bulky hydrophobic methacrylate, undergoes very fast polymerization, in bulk, with Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA)/ethyl‐2‐bromoisobutyrate system, at ambient temperature. IBMA also undergoes a spontaneous initiator‐free polymerization, at ambient temperature, with Cu(I)Br/PMDETA catalytic system in dimethyl sulfoxide–water mixtures. The rate of the polymerization is seen to increase with the water content up to 80 mol % of water. A possible intervention of air in initiation is proposed. The active Cu(0) formed by the disproportionation of Cu(I) species in aqueous medium probably plays a vital role for a possible air‐initiation of IBMA via single electron transfer‐living radical polymerization (SET‐LRP) mechanism. A high tolerance level to water under SET‐LRP conditions is demonstrated. The poly(IBMA) samples obtained exhibit low molecular weight distributions (1.1–1.3). Similar behavior was not observed with other common methacrylates such as methyl methacrylate, t‐butyl methacrylate, cyclohexyl methacrylate, and benzyl methacrylate. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Sn(0)‐mediated single electron transfer‐living radical polymerization (SET‐LRP) of acrylonitrile (AN) with carbon tetrachloride (CCl4) as initiator and hexamethylenetetramine (HMTA) as ligand in N, N‐dimethylformamide (DMF) was studied. The polymerization obeyed first order kinetic. The molecular weight of polyacrylonitrile (PAN) increased linearly with monomer conversion and PAN exhibited narrow molecular weight distributions. Increasing the content of Sn(0) resulted in an increase in the molecular weight and the molecular weight distribution. Effects of ligand and initiator were also investigated. The block copolymer PAN‐b‐polymethyl methacrylate with molecular weight at 126,130 and polydispersity at 1.36 was successfully obtained. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Chain transfer to solvent has been investigated in the conventional radical polymerization and nitroxide‐mediated radical polymerization (NMP) of N‐isopropylacrylamide (NIPAM) in N,N‐dimethylformamide (DMF) at 120 °C. The extent of chain transfer to DMF can significantly impact the maximum attainable molecular weight in both systems. Based on a theoretical treatment, it has been shown that the same value of chain transfer to solvent constant, Ctr,S, in DMF at 120 °C (within experimental error) can account for experimental molecular weight data for both conventional radical polymerization and NMP under conditions where chain transfer to solvent is a significant end‐forming event. In NMP (and other controlled/living radical polymerization systems), chain transfer to solvent is manifested as the number‐average molecular weight (Mn) going through a maximum value with increasing monomer conversion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
The homogeneous atom transfer radical polymerization (ATRP) of n‐butyl acrylate with CuBr/N‐(n‐hexyl)‐2‐pyridylmethanimine as a catalyst and ethyl 2‐bromoisobutyrate as an initiator was investigated. The kinetic plots of ln([M]0/[M]) versus the reaction time for the ATRP systems in different solvents such as toluene, anisole, N,N‐dimethylformamide, and 1‐butanol were linear throughout the reactions, and the experimental molecular weights increased linearly with increasing monomer conversion and were very close to the theoretical values. These, together with the relatively narrow molecular weight distributions (polydispersity index ~ 1.40 in most cases with monomer conversion > 50%), indicated that the polymerization was living and controlled. Toluene appeared to be the best solvent for the studied ATRP system in terms of the polymerization rate and molecular weight distribution among the solvents used. The polymerization showed zero order with respect to both the initiator and the catalyst, probably because of the presence of a self‐regulation process at the beginning of the reaction. The reaction temperature had a positive effect on the polymerization rate, and the optimum reaction temperature was found to be 100 °C. An apparent enthalpy of activation of 81.2 kJ/mol was determined for the ATRP of n‐butyl acrylate, corresponding to an enthalpy of equilibrium of 63.6 kJ/mol. An apparent enthalpy of activation of 52.8 kJ/mol was also obtained for the ATRP of methyl methacrylate under similar reaction conditions. Moreover, the CuBr/N‐(n‐hexyl)‐2‐pyridylmethanimine‐based system was proven to be applicable to living block copolymerization and living random copolymerization of n‐butyl acrylate with methyl methacrylate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3549–3561, 2002  相似文献   

7.
Use of ionic liquids as reaction media was investigated in the design of an environmentally friendly single electron transfer‐living radical polymerization (SET‐LRP) for acrylonitrile (AN) without any ligand by using Fe(0) wire as catalyst and 2‐bromopropionitrile as initiator. 1‐Methylimidazolium acetate ([mim][AT]), 1‐methylimidazolium propionate ([mim][PT]), and 1‐methylimidazolium valerate ([mim][VT]) were applied in this study. First‐order kinetics of polymerization with respect to the monomer concentration, linear increase of the molecular weight, and narrow polydispersity with monomer conversion showed the controlled/living radical polymerization characters. The sequence of the apparent polymerization rate constant of SET‐LRP of AN was kapp ([mim][AT]) > kapp ([mim][PT]) > kapp ([mim][VT]). The living feature of the polymerization was also confirmed by chain extensions of polyacrylonitrile with methyl methacrylate. All three ionic liquids were recycled and reused and had no obvious effect on the controlled/living nature of SET‐LRP of AN. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
High performance polyacrylonitrile (PAN) was prepared with Mg powder as both reducing agent (RA) and supplemental activator (SA) by single electron transfer‐living radical polymerization (RASA SET‐LRP). First‐order kinetics of polymerization with respect to monomer concentration, linear increase of molecular weight, and narrow polydispersity with monomer conversion, and the obtained high isotacticity PAN indicate that RASA SET‐LRP in the presence of Mg powder could simultaneously control molecular weight and tacticity of PAN. compared with that obtained with ascorbic acid (VC) as RA, an obvious increase in isotacticity of PAN was observed. the block copolymer pan‐b‐pAN with molecular weight at 112,460, polydispersity at 1.33, and isotacticity at 0.314 was successfully prepared. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3328–3332  相似文献   

9.
The single‐electron transfer living radical polymerization (SET‐LRP) method in the presence of chain transfer agent was used to synthesize poly(N‐isopropylacrylamide) [poly(NIPAM)] with a low molecular weight and a low polydispersity index. This was achieved using Cu(I)/2,2′‐bipyridine as the catalyst, 2‐bromopropionyl bromide as the initiator, 2‐mercaptoethanol as the chain transfer agent (TH), and N,N‐dimethylformamide (DMF) as the solvent at 90 °C. The copper nanoparticles with diameters of 16 ± 3 nm were obtained in situ by the disproportionation of Cu(I) to Cu(0) and Cu(II) species in DMF at 22 °C for 24 h. The molecular weights of poly(NIPAM) produced were significantly higher than the theoretical values, and the polydispersities were less than 1.18. The chain transfer constant (Ctr) was found to be 0.051. Although the kinetic analysis of SET‐LRP in the presence of TH corroborated the characteristics of controlled/living polymerization with pseudo‐first‐order kinetic behavior, the polymerization also exhibited a retardation period (k > ktr). The influence of molecular weight on lower critical solution temperature (LCST) was investigated by refractometry. Our experimental results explicitly elucidate that the LCST values increase slightly with decreasing molecular weight. Reversibility of solubility and collapse in response to temperature well correlated with increased molecular weight of poly(NIPAM). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
FeCl3 coordinated by isophthalic acid was first used as a catalyst in the azobisisobutyronitrile‐initiated reverse atom transfer radical polymerization of acrylonitrile. N,N‐Dimethylformamide was used as a solvent to improve the solubility of the ligand. An FeCl3‐to‐isophthalic acid ratio of 0.5 not only gave the best control of the molecular weight and its distribution but also provided rather a rapid reaction rate. The effects of different solvents on the polymerization of acrylonitrile were also investigated. The rate of the polymerization in N,N‐dimethylformamide was faster than that in propylene carbonate and toluene. The molecular weight of polyacrylonitrile agreed reasonably well with the theoretical molecular weight in N,N‐dimethylformamide. The rate of polymerization increased with increasing polymerization temperature, and the apparent activation energy was calculated to be 59.9 kJ mol?1. Reverse atom transfer radical polymerization was first used to successfully synthesize acrylonitrile polymers with a molecular weight higher than 80,000 and a narrow polydispersity as low as 1.22. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 219–225, 2006  相似文献   

11.
The Cu0‐mediated single electron transfer‐living radical polymerization of acrylamide and N,N‐dimethyl‐N‐methacryloyloxyethyl‐N‐sulfobutyl ammonium in aqueous at 25 °C using 2‐chloropropionamide as initiator with Cu0 powder/tris‐(2‐dimethylamino ethyl)amine (Me6‐TREN) as catalyst system is studied. The results showed the characteristic of the “living” polymerization that were the Mn of polymers increased linearly with monomer conversion and the ln([M]0/[M]) increased linearly with time too, meanwhile the narrow molecular of weight distributions were found at most cases. Because of the high rate constant of propagation and bimolecular termination of the acrylamide, the external addition of CuCl2 is required to mediate deactivation the early stage of polymerization. In addition, the disproportionation constant of CuIX/L in H2O is higher than in other solvents and the coordination of amino group and CuII takes place easily, so the isopropanol or N,N‐dimethylformamide is added to control the polymerization. High conversions were achieved within short time and the polymers prepared showed good antipolyelectrolyte properties in inorganic salts solutions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Atom transfer radical polymerization using activators generated by electron transfer (AGET ATRP) of acrylonitrile (AN) initiated by ethyl 2‐bromoisobutyrate was approached for the first time using 1,1,4,7,10,10‐hexamethyltriethylenetetramine (HMTETA) and 1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as both ligand and reducing agent. AGET ATRP of AN with HMTETA as both ligand and reducing agent was better controlled than with PMDETA as both ligand and reducing agent under the same experimental conditions. With an increase content of HMTETA, the polymerization provided an accelerated reaction rate and a broader polymer molecular weight distribution. The rate of polymerization with DMF as solvent was faster than with acetonitrile, cyclohexanone, toluene, and xylene as solvents. The polymerization apparent activation energy was calculated to be 45.7 kJ mol?1. The end functionality of polyacrylonitrile (PAN) was confirmed by 1H NMR spectroscopy. The living feature of PAN was verified by chain extensions of PAN with methyl methacrylate and AN. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 128–133, 2010  相似文献   

13.
In this study, we reported the synthesis of polyacrylonitrile (PAN) via living radical polymerization in N, N‐dimethylformamide using carbon tetrachloride as initiator, copper(II) chloride (CuCl2)/hexamethylenetetramine as catalyst system, and 2,2‐azobisisobutyronitrile as a high concentration of thermal radical initiator. The polymerization proceeded in controlled/living manner as indicated by first‐order kinetics of the polymerization with respect to the monomer concentration, linear increase of the molecular weight with monomer conversion and narrow polydispersity. Higher polymerization rate and narrower molecular weight distributions were observed with CuCl2 less than 50 ppm. The rate of polymerization showed a trend of increase along with temperature. The modified PAN containing amidoxime group was used for extraction of Ag(I) ions from aqueous solutions. The adsorption kinetics data indicated that the adsorption process followed pseudo‐second‐order rate model. The isotherm adsorption process could be described by the Freundlich isotherm model. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
Cellulose produced from cotton fibers was used as substrate for synthesis of oil‐absorbing materials by single electron transfer‐living radical polymerization. The cellulose macroinitiator was prepared by esterification of hydroxyl group with 2‐bromoisobutyryl bromide (BiBB), followed by grafting with butyl methacrylate (BMA) and pentaerythritol triacrylate (PETA) to render a three‐dimensional architecture. The polymerization was catalyzed by Cu(0) powder/hexamethylenetetramine (HMTA) and performed in N,N‐dimethylformamide (DMF). Effects of cellulose, catalyst, reaction temperature, and time were investigated in detail. The maximum oil absorption to chloroform and toluene could reach 29.0 and 15.4 g·g?1, respectively. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
This investigation reports the preparation of tailor‐made poly(2‐ethylhexyl acrylate) (PEHA) prepared via in situ living radical polymerization in the presence of layered silicates and characterization of this polymer/clay nanocomposite. Being a low Tg (?65 °C) material, PEHA has very good film formation property for which it is used in paints, adhesives, and coating applications. 2‐Ethylhexyl acrylate was polymerized at 90 °C using CuBr and Cu(0) as catalyst in combination with N,N,N′,N″,N″‐pentamethyl diethylenetriamine (PMDETA) as ligand. A tremendous enhancement in reaction rate and polymerization data was achieved when acetone was added as additive to increase the efficiency of the catalyst system. PEHA/clay nanocomposite was prepared at 90 °C using CuBr as catalyst in combination with PMDETA as ligand. Different types of clay with same loading were also used to study the effect on reaction rate. The molecular weight (Mn) and polydispersity index of the prepared nanocomposites were characterized by size exclusion chromatography. The active end group of the polymer chain was analyzed by 1H NMR analysis and by chain extension experiment. Polymer/clay interaction was studied by Fourier Transform Infrared spectrometry and wide‐angle X‐ray diffraction analyses. Distribution of clay in the polymer matrix was studied by the transmission electron microscopy. Thermogravimetric analysis showed that thermal stability of PEHA/clay nanocomposite increases on addition of nanoclay. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
The Cu(0)‐mediated single electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate (MMA) using ethyl 2‐bromoisobutyrate (EBiB) as an initiator with Cu(0)/N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine as a catalyst system in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) was studied. The polymerization showed some living features: the measured number‐average molecular weight (Mn,GPC) increased with monomer conversion and produced polymers with relatively low polydispersities. The increase of HFIP concentration improved the controllability over the polymerization with increased initiation efficiency and lowered polydispersity values. 1H NMR, MALDI‐TOF‐MS spectra, and chain extension reaction confirmed that the resultant polymer was end‐capped by EBiB species, and the polymer can be reactivated for chain extension. In contrast, in the cases of dimethyl sulfoxide or N,N‐dimethylformamide as reaction solvent, the polymerizations were uncontrolled. The different effects of the solvents on the polymerization indicated that the mechanism of SET‐LRP differed from that of atom transfer radical polymerization. Moreover, HFIP also facilitated the polymerization with control over stereoregularity of the polymers. Higher concentration of HFIP and lower reaction temperature produced higher syndiotactic ratio. The syndiotactic ratio can be reached to about 0.77 at 1/1.5 (v/v) of MMA/HFIP at ?18 °C. In conclusion, using HFIP as SET‐LRP solvent, the dual control over the molecular weight and tacticity of PMMA was realized. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6316–6327, 2009  相似文献   

17.
The reverse atom‐transfer radical polymerization (RATRP) technique using CuCl2/2,2′‐bipyridine (bipy) complex as a catalyst was applied to the living radical polymerization of acrylonitrile (AN). A hexasubstituted ethane thermal iniferter, diethyl 2,3‐dicyano‐2,3‐diphenylsuccinate (DCDPS), was firstly used as the initiator in this copper‐based RATRP initiation system. A CuCl2 to bipy ratio of 0.5 not only gives the best control of molecular weight and its distribution, but also provides rather rapid reaction rate. The rate of polymerization increases with increasing the polymerization temperature, and the apparent activation energy was calculated to be 57.4 kJ mol?1. Because the polymers obtained were end‐functionalized by chlorine atoms, they were used as macroinitiators to proceed the chain extension polymerization in the presence of CuCl/bipy catalyst system via a conventional ATRP process. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 226–231, 2006  相似文献   

18.
Zn(0)/ppm concentrations of CuBr2 from 10 to 50 ppm was firstly used to catalyze radical polymerization of acrylonitrile at ambient temperature. The polymerization displayed typical living radical polymerization (LRP) characteristics, as evidenced by pseudo first‐order kinetics of polymerization, linear increase of number‐average molecular weight, and low polydispersity index (PDI) value. Effects of solvent, copper concentration, and initiator concentration on the polymerization reaction and molecular weight as well as PDI were investigated in detail. EC excelled NMP, DMF, and DMSO in terms of rate of polymerization as well as control of molecular weight and PDI. The increase of the copper concentration from 2.5 to 50 ppm leads to a higher rate of polymerization and a better control over the polymerization reaction. 1H NMR and GPC analyses as well as chain extension reaction confirmed the very high chain‐end functionality of the resultant polymer. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Single electron transfer‐living radical polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with defined architecture. The present article describes the polymerization of methyl methacrylate by SET‐LRP in protic solvent mixtures. Herein, the polymerization process was catalyzed by a straightforward Cu(0)wire/Me6‐TREN catalyst while initiation was obtained by toluenesulfonyl chloride. All experiments were conducted at 50 °C and the living polymerization was demonstrated by kinetic evaluation of the SET‐LRP. The process follows first order kinetic until all monomer is consumed which was typically achieved within 4 h. The molecular weight increased linearly with conversion and the molecular weight distributions were very narrow with Mw/Mn ~ 1.1. Detailed investigations of the polymer samples by MALDI‐TOF confirmed that no termination took place and that the chain end functionality is retained throughout the polymerization process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2236–2242, 2010  相似文献   

20.
A novel catalyst system based on La(0)/hexamethylenetetramine (HMTA) complexes is used for single electron transfer‐living radical polymerization (SET‐LRP) of acrylonitrile (AN) in the presence of ascorbic acid (VC) with carbon tetrachloride (CCl4) as a initiator and N,N‐dimethylformamide (DMF) as a solvent. Compared with SET‐LRP of AN in the absence of VC, monomer conversion is markedly increased. SET‐LRP of AN in the presence of VC is also conducted in the presence of air. The kinetic studies show that the polymerizations both in the absence of oxygen and in the presence of air proceed in a well‐controlled manner. With the respect to the polymerization in the absence of oxygen, the polymerization in the presence of air provides slower reaction rate and broader polydispersity. Effects of amount of VC, La, CCl4, and are investigated in detail. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4088–4094  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号