首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitro derivatives of benzene and aminobenzenes are optimized at the DFT‐B3LYP/6‐31G* level. The heat of formation (ΔHf) and crystal theoretical density (ρ) are estimated to evaluate the detonation properties using the modified Kamlet–Jacobs equations. Thermal stability and the pyrolysis mechanism of the title compounds are investigated by calculating the bond dissociation energies (BDE) at the unrestricted B3LYP/6‐31G* level. The kinetic parameter and the static electronic structural parameters can be used to predict the stability and the relative magnitude of the impact sensitivity of homologues. According to the quantitative standard of the energy and the stability as an HEDC, the title compounds having more than four nitro groups satisfy this requirement. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

2.
The ? NH2, ? NO2, ? N3, ? NHNO2, and ? ONO2 substitution derivatives of PYX (2,6‐bis(picrylamino)‐3,5‐dinitropyridine) were studied at the B3LYP/6‐31G** level of density functional theory. The sublimation enthalpies and heats of formation (HOFs) in gas phase and solid state of these compounds were calculated. The theoretical predicted density (ρ), detonation pressure (P), and detonation velocity (D) showed that these derivatives have better detonation performance than PYX. The effects of substituent groups on HOF, ρ, P, and D were discussed. The order of contribution of various groups to P and D was ? ONO2 > ? NO2 > ? NHNO2 > ? N3 > ? NH2. Sensitivity was evaluated using the frontier orbital energies, bond orders, bond dissociation enthalpies (BDEs), and characteristic heights (h50). The trigger bonds in the pyrolysis process for these PYX derivatives may be Ring‐NO2, NH? NO2, or O? NO2 varying with the substituents. The h50 of most compounds are larger than that of CL‐20, and those of ? NH2, ? NO2, and most ? ONO2 derivatives are larger than that of RDX. The BDEs of the trigger bonds of all but the ? ONO2 derivatives are sufficiently large. Taking both detonation performance and sensitivity into consideration, some derivatives of PYX may be good candidates of explosives. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
A novel family of pentaerythritol tetranitrate (PETN) derivatives based parent PETN skeleton were designed by introducing two energetic groups –NF2 and –NO2. Their electronic structure, heats of formation, detonation properties, impact sensitivity, and thermal stability were investigated by using density functional theory. The findings reveal that most of the title compounds have good detonation performance. The –NF2 group played an important role in improving the densities, heats of detonation, and detonation properties of the designed molecules. The values of h50 for almost all the PETN derivatives are higher than that of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. An analysis of bond dissociation energy suggests that the N-NO2 bond tends to be a trigger bond in thermal decomposition. Taking both detonation properties and thermal stabilities into consideration, the three compounds may be selected as potential high-energy-density compounds.  相似文献   

4.
The heats of formation (HOFs) for a series of monofurazan derivatives were calculated by using density functional theory. It is found that the ? CN or ? N3 group plays a very important role in increasing the HOF values of the furazan derivatives. The detonation velocities and detonation pressures of the furazan derivatives are evaluated at two different levels. The results show that the ? NF2 group is very helpful for enhancing the detonation performance for the furazan derivatives, but the case is quite the contrary for the ? CH3 group. An analysis of the bond dissociation energies and bond orders for the weakest bonds indicate that the substitutions of ? CN group are favorable and enhances the thermal stability of the furazan derivatives, but the ? NO2 groups produce opposite effects. These results provide basic information for the molecular design of novel high‐energy density materials. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

5.
We designed a new family of pentazole‐based high energy density compounds with oxygen balance equal to zero by introducing −NH2, −NO2, −N3, −CF2NF2, and −C[NO2]3, and the properties including density, heats of formation, detonation performances, and impact sensitivity were investigated using density functional theory. The results show that half of these new energetic molecules exhibit higher densities than RDX (1.82 g/cm3), in which H5 gives the highest density of 2.09 g/cm3. Among all the 54 designed molecules, 22 compounds have higher D and P than RDX and eleven compounds have higher D and P than HMX, indicating that designing the pentazole‐based derivatives with oxygen balance equal to zero is a very effective way to obtain potential energetic compounds with outstanding detonation properties. Taking both the detonation performance and stability into consideration, nine compounds may be recognized as potential candidates of high energy density compounds. It is expected that our results will contribute to the theoretical design of new‐generation energetic explosives.  相似文献   

6.
The polynitrotetraazaoctahydroanthracenes were optimized to obtain their molecular geometries and electronic structures at density functional theory–B3LYP/6‐31+G(d) level. Detonation velocities (D) and detonation pressures (P) were estimated for this nitramine compounds using Kamlet‐Jacobs equations, based on the theoretical densities (ρ) and heats of formation. It is found that there are good linear relationships between volume, density, detonation velocity, detonation pressure and the number of nitro group. Thermal stability of the compounds was investigated by calculating the bond dissociation energies and energy gap (ΔELUMO–HOMO). The simulation results reveal that molecule H performs similarly to famous explosive RDX. These results provide basic information for molecular design of novel high energetic density compounds. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
含能材料的密度、爆速、爆压和静电感度的理论研究   总被引:7,自引:0,他引:7  
用密度泛函理论(DFT) B3LYP方法, 在6-31G*基组水平下, 全优化计算了系列硝胺类和硝基芳烃类爆炸物的几何构型, 用Monte-Carlo方法和自编程序, 基于0.001 e•bohr-3等电子密度面所包围的体积空间求得分子平均摩尔体积(V)和理论密度(ρ). 用Kamlet-Jacobs方程基于理论密度(ρ)和PM3计算生成焓(ΔHf)估算标题物的爆速(D)和爆压(p), 发现多环硝胺类化合物的爆轰性能优于芳烃硝基类化合物, 故此, 在寻求高能量密度材料(HEDM)时, 我们应特别关注多环硝胺化合物. 与ρD文献值比较, 表明本理论计算方法和结果是适用可靠的. 将爆速(D)和爆压(p)计算值与静电感度实验值(EES)进行比较和关联, 发现: 若对化合物进行细致分类讨论, 则它们之间存在较好的线性关系. 据此建议, 在含能材料分子设计中, 可通过理论计算爆轰性质(Dp)去预估难以定量求得或尚未合成的含能材料的静电火花感度值(EES). 此外, 我们还讨论了取代基对ρ, Dp的影响, 也有助于分子设计.  相似文献   

8.
The nitro derivatives of phenols are optimized to obtain their molecular geometries and electronic structures at the DFT‐B3LYP/6‐31G* level. Detonation properties are evaluated using the modified Kamlet–Jacobs equations based on the calculated densities and heats of formation. It is found that there are good linear relationships between density, detonation velocity, detonation pressure, and the number of nitro and hydroxy groups. Thermal stability and pyrolysis mechanism of the title compounds are investigated by calculating the bond dissociation energies (BDEs) at the unrestricted B3LYP/6‐31G* level. The activation energies of H‐transfer reaction is smaller than the BDEs of all bonds and this illustrates that the pyrolysis of the title compounds may be started from breaking O? H bond followed by the isomerization reaction of H transfer. Moreover, the C? NO2 bond with the smaller bond overlap population and the smaller BDE will also overlap may be before homolysis. According to the quantitative standard of energetics and stability as a high‐energy density compound, pentanitrophenol essentially satisfies this requirement. In addition, we have discussed the effect of the nitro and hydroxy groups on the static electronic structural parameters and the kinetic parameter. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

9.

The heats of detonation of 20 simple high explosives and explosive mixtures were determined by means of an adiabatic detonation calorimeter designed by the authors. The results indicated that the performance of the instrument was reliable and the experimental data were very accurate. For explosive mixtures, there was a linear accumulative relationship between the heats of detonation of the explosive mixture and its components. Accordingly, the heats of detonation of explosive mixtures could be calculated directly from the heats of detonation of simple explosives and the characteristic heats of other components. The experiments showed that the gold or brass shell of the cylindrical charge could be substituted by a thick-walled porcelain shell, which had the advantage of cheapness.

  相似文献   

10.
The concepts of internal pressure and cohesive energy density of liquids are considered. Conditions of equality between the internal pressure and the cohesive energy density are revealed.  相似文献   

11.
Internal pressures and cohesive energy densities of binary liquid mixtures of n-pentane+dichloromethane, n-pentane+methylacetate, 2-propanol+methylacetate and n-bytylamine+1,4-dioxane at 25°C have been evaluated from molar volumes surface tensions and enthalpies. The data obtained provide information about interactions in the binary liquid mixtures which can be correlated with results from other thermodynamic properties.Presented at the VI Congreso Argentino de Fisicoquímica, Santiago del Estero, Argentina, 1989.  相似文献   

12.
The derivatives of DPO (2,5-dipicryl-1,3,4-oxadiazole) are optimized to obtain their molecular geometries and electronic structures at the DFT-B3LYP/6-31G* level. The bond length is focused to primarily predict thermal stability and the pyrolysis mechanism of the title compounds. Detonation properties are evaluated using the modified Kamlet-Jacobs equations based on the calculated densities and heats of formation. It is found that there are good linear relationships between density, detonation velocity, detonation pressure, and the number of azido, nitrate, and nitramine groups. According to the largest exothermic principle, the relative specific impulse is investigated by calculating the enthalpy of combustion (ΔH(comb)) and the total heat capacity (C(p,gases)). It is found that the introduction of -N(3), -ONO(2), and -NNO(2) groups could increase the specific impulses and II-4, II-5, and III-5 are potential candidates for High Energy Density Materials (HEDMs). The effect of the azido, nitrate, and nitramine groups on the structure and the properties is discussed.  相似文献   

13.
A series of adamantyl nitrates have been theoretically studied from gas to solid to search for new po-tential high energy density compounds (HEDCs). The heats of formation (HOFs) for the 26 title com-pounds were calculated by designing isodesmic reactions at the B3LYP/6-31G level. It was found that the HOFs of the 26 isomers with the same number of —ONO2 groups (n) are not correlated well with the corresponding substituted positions. According to the obtained heats of detonation (Q),detonation velocities (D),and detonation pressures (P) using the Kamlet-Jacobs equations,it was found that when n=7~8,the adamantyl nitrates meet the criterion as an HEDC. The calculations on bond dissociation energies of O—N (EO—N) showed that the adamantyl nitrates with gemi —ONO2 always have the worst stability among the isomers,and all the adamantyl nitrates with gemi —ONO2 have similar stability. Due to the complexity of their structures,values of EO—N do not decrease with the increase of the substituent number n obviously,and the stability of adamantyl nitrates is not determined by only one structural parameter. Considering the stability requirement,only 1,2,4,6,8,9,10-adamantyl heptanitrate is recom-mended as a feasible HEDC. Molecular packing searching for 1,2,4,6,8,9,10-adamantyl heptanitrate among 7 most possible space groups (P21/c,P-1,P212121,P21,Pbca,C2/c,and Pna21) using Compass and Dreiding force fields showed that this compound tends to crystallize in P21/c. Ab initio periodic calculations on the electronic structure of the predicted packing showed that the O—NO2 bond is the trigger bond during thermolysis,which agrees with the result derived from the study of dissociation energies of O—N bonds.  相似文献   

14.
The question about the definition of the “internal pressure” concept is being discussed. It is shown that the previously found differential relation between the cohesion energy density and the internal pressure is one of the examples of an absolutely general interrelation between definitely connected differential functions. It is ascertained that the ratio (the internal pressure divided by the cohesion energy density) is a structuresensitive parameter inherent to the calorific (thermal) equation of a liquid state.  相似文献   

15.
Density functional theory (DFT) method has been employed to study the geometric and electronic structures of a series of four-membered ring compounds at the B3LYP/6-311G** and the B3P86/6-311G** levels. In the isodesmic reactions designed for the computation of heats of formation (HOFs), 3,3-dimethyl-oxetane, azetidine, and cyclobutane were chosen as reference compounds. The HOFs for N(3) substituted derivations are larger than those of oxetane compounds with --ONO2 and/or --NF2 substituent groups. The HOFs for oxetane with --ONO2 and/or --NF2 substituent groups are negative, while the HOFs for N3 substituted derivations are positive. For azetidine compounds, the substituent groups within the azetidine ring affect the HOFs, which increase as the difluoroamino group being replaced by the nitro group. The magnitudes of intramolecular group interactions were predicted through the disproportionation energies. The strain energy (SE) for the title compounds has been calculated using homodesmotic reactions. For azetidine compounds, the NF2 group connecting N atom in the ring decrease the SE of title compounds. Thermal stability were evaluated via bond dissociation energies (BDE) at the UB3LYP/6-311G** level. For the oxetane compounds, the O--NO2 bond is easier to break than that of the ring C--C bond. For the azetidine and cyclobutane compounds, the homolyses of C--NX2 and/or N--NX2 (X = O, F) bonds are primary step for bond dissociation. Detonation properties of the title compounds were evaluated by using the Kamlet-Jacobs equation based on the calculated densities and HOFs. It is found that 1,1-dinitro-3,3-bis(difluoroamino)-cyclobutane, with predicted density of ca. 1.9 g/cm(3), detonation velocity (D) over 9 km/s, and detonation pressure (P) of 41 GPa that are lager than those of TNAZ, is expected to be a novel candidate of high energy density materials (HEDMs). The detonation data of nitro-BDFAA and TNCB are also close to the requirements for HEDMs.  相似文献   

16.
Studies have suggested that octanitrocubane (ONC) is one of the most powerful non-nuclear high energy density material (HEDM) currently known. 2,4,6,8-Tetranitro-1,3,5,7-tetraazacubane (TNTAC) studied in this work may also be a novel HEDM due to its high nitrogen content and crystal density. Density functional theory and molecular mechanics methods have been employed to study the crystal structure, IR spectrum, electronic structure, thermodynamic properties, gas-phase and condensed-phase heat of formation, detonation performance, and pyrolysis mechanism of TNTAC. The TNTAC has a predicted density of about 2.12 g/cm(3), and its detonation velocity (10.42 km/s) and detonation pressure (52.82 GPa) are higher than that of ONC. The crystalline packing is P2(1)2(1)2(1), and the corresponding cell parameters are Z = 4, a = 8.87 ?, b = 8.87 ?, and c = 11.47 ?. Both the density of states of the predicted crystal and the bond dissociation energy of the molecule in gas phase show that the cage C-N bond is the trigger bond during thermolysis. The activation energy of the pyrolysis initiation reaction obtained from the B3LYP/6-311++G(2df,2p) level is 125.98 kJ/mol, which indicates that TNTAC meets the thermal stability request as an exploitable HEDM.  相似文献   

17.
Global properties of the Born-Oppenheimer energy expectation value functional, defined over the nuclear configuration space R, are analyzed. Quantum chemical reaction graphs and reaction networks are defined in terms of intersection graphs of connected sets of nuclear geometries, representing various chemical structures. The set of all possible reaction mechanisms on the given energy hypersurface and the associated activation energy conditions are analyzed using reachability matrices defined over digraphs D s() and D s(, E).  相似文献   

18.
We designed a series of energetic compounds based on the CL-20 molecular skeleton, and the properties including molecular geometric structures, electronic structures, density, heat of formation, detonation performances, and impact sensitivity were evaluated using density functional theory (DFT). The results indicate that five molecules have higher density values than that of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX; 1.91 g/cm3) and A4 has a larger density value (2.07 g/cm3) than that of CL-20 (2.04 g/cm3). In addition, most of the molecules have better detonation performances and stability than those of CL-20, with A4 showing much greater detonation velocity (9.93 km/s) and pressure (47.32 GPa) than those of CL-20 with a h50 value of 14.02 cm. Taking both excellent detonation performance and low sensitivity into consideration, all seven compounds except for A3 and A5 are considered as potential energetic compounds. These theoretically calculated results would be conducive to the design and synthesis of novel nitramine energetic compounds.  相似文献   

19.
The regions of variation of density, enthalpy of formation, and detonation velocity of all of the formally possible structual isomers were determined for several molecular formulas of C,H,N,O-containing explosives. The histograms of the distribution of the structual isomers over these parameters were constructed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 859–862, May, 1995.The authors are grateful to Mrs. I. D. Solodukhina for the design of the graphical material.The work was carried out with the financial support of the Russian Foundation for Basic Research (Project No. 94-03-09323).  相似文献   

20.
The electron density distribution (EDD) of a molecular system can be determined experimentally from elaborate X‐ray diffraction measurements or calculated with quantum mechanical methods: This provides a unique opportunity for mutual validation of the experimental and theoretical methods—a validation that goes far beyond comparison of molecular structures. Two examples of complex molecular systems of biologic relevance are presented. The first is the cocrystallized complex of betaine, imidazole, and picric acid, 1, which is a 75‐atom molecular complex serving as a model for the active site in the serine proteases class of enzymes, the so‐called catalytic triad. For 1 the experimental charge density was determined by combined modeling of single crystal synchrotron X‐ray and neutron diffraction data measured at 28(1) K, and it is compared with ab initio theoretical calculations at the B3LYP/6‐311G(d,p) level of theory. Overall, the agreement is good, but in one strong N? H? O hydrogen bond clear differences are observed. The second example concerns the EDD of the mixed valence trinuclear oxo‐centered iron carboxylate, [Fe3O(OOCC(CH3)3)6(NC5H5)3], 2. This molecule contains 133 atoms (542 electrons) including three open‐shell iron atoms, and the experimental investigation is based on synchrotron X‐ray diffraction data. Calculations in the experimental geometry at the commonly used UB3LYP/LanL2DZ level of theory are not able to reproduce a number of experimentally observed electron density features. In particular, the sp3‐like distribution on the central oxygen atom and the electron deformations on the iron centers are at variance with experiment. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号