共查询到20条相似文献,搜索用时 15 毫秒
1.
A dye‐linked initiator consisting of a merocyanine dye, which has an absorption maximum at 460 nm, and a substituted bis(trichloromethyl)‐1,3,5‐triazine initiator was prepared in order to achieve an efficient photopolymerization in a visible‐light region. The spectroscopic studies clearly showed that the dye‐linked initiator exhibit a marked increase in the efficiency of fluorescence quenching than a simple mixture of the dye/initiator. These results are reasonably explained in terms of the efficiency of electron transfer between the dye and the initiator. The relative photoinitiating efficiency of dye‐linked initiators in photopolymerization of acrylate monomers was evaluated and the results clearly indicated that the dye‐linked photoinitiator exhibited a marked increase in the photoinitiating efficiency of photopolymerization of acrylates compared to a simple mixture of the dye/initiator in photopolymer coatings particularly at a lower concentration of the initiator. This was explained in terms of the active quenching sphere of the dye/initiator system. Superior photosensitivity in the linked compound at a lower concentration indicates that this would be particularly useful as a visible‐light photoinitiator in holographic‐recording photopolymers. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
2.
Jun Wei Hongyu Wang Jie Yin 《Journal of polymer science. Part A, Polymer chemistry》2007,45(4):576-587
A novel thio‐containing diamine with a benzophenone structure, 4‐amino‐4′‐[4‐aminothiophenyl]benzophenone (AATBP), was synthesized. Two kinds of polymeric photoinitiators, PUPIA and PUPI, were synthesized through the polycondensation of toluene‐2,4‐diisocyanate with AATBP and/or N‐methyldiethanolamine (MDEA). A macroamine, PUPA, was also synthesized for comparison. Fourier transform infrared, 1H NMR, and gel permeation chromatography analyses confirmed the structures of all the polymers. The ultraviolet–visible spectra of PUPIA, PUPI, and AATBP were similar, and all exhibited the maximal absorption above 325 nm. The photopolymerization of two monomers with different functionalities, poly(propylene glycol)diacrylate and trimethylolpropane triacrylate initiated by PUPIA, PUPI/MDEA, PUPI/PUPA, AATBP/MDEA, and AATBP/PUPA, was studied through differential scanning photocalorimetry. The results showed that both PUPIA and PUPI/MDEA had high photoefficiency, and their low‐molecular‐weight counterparts could hardly initiate the photopolymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 576–587, 2007 相似文献
3.
Dongkwan Kim Jeffrey W. Stansbury 《Journal of polymer science. Part A, Polymer chemistry》2009,47(3):887-898
Three‐component photoinitiator systems generally include a light‐absorbing photosensitizer (PS), an electron donor, and an electron acceptor. To investigate the key factors involved with visible‐light activated free radical polymerizations involving three‐component photoinitiators and 2‐hydroxyethyl methacrylate, we used thermodynamic feasibility and kinetic considerations to study photopolymerizations initiated with either rose bengal or fluorescein as the PS. The Rehm–Weller equation was used to verify the thermodynamic feasibility for the photo‐induced electron transfer reaction. It was concluded that key kinetic factors for efficient visible‐light activated initiation process are summarized in two ways: (1) to retard back electron transfer and recombination reaction steps and (2) to use a secondary reaction step for consuming dye‐based radical and regenerating the original PS (dye). Using the thermodynamic feasibility and kinetic data, we suggest three different kinetic mechanisms, which are (i) photo‐reducible series mechanism, (ii) photo‐oxidizable series mechanism, and (iii) parallel‐series mechanism. Because the photo‐oxidizable series mechanisms most efficiently allow the key kinetic factors, this kinetic pathway showed the highest conversion and rate of polymerization. The kinetic data measured by near‐IR and photo‐differential scanning calorimeter verified that the photo‐oxidizable series mechanism provides the most efficient kinetic pathway in the visible‐light activated free radical polymerizations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 887–898, 2009 相似文献
4.
Dongkwan Kim Jeffrey W. Stansbury 《Journal of polymer science. Part A, Polymer chemistry》2009,47(12):3131-3141
A series of kinetic experiments were conducted involving visible‐light activated free radical polymerizations with three‐component photoinitiators and 2‐hydroxyethyl methacrylate (HEMA). Three‐component photoinitiator systems generally include a light‐absorbing photosensitizer (PS), an electron donor and an electron acceptor. To compare kinetic efficiency, we used thermodynamic feasibility and measured kinetic data. For this study, 5,10,15,20‐tetraphenyl‐21H,23H‐porphyrin zinc (Zn‐tpp) and camphorquinone (CQ) were used as the PSs. The Rehm‐Weller equation was used to verify the thermodynamic feasibility for the photo‐induced electron transfer reaction. Using the thermodynamic feasibility, we suggest two different kinetic mechanisms, which are (i) photo‐reducible series mechanism of CQ and (ii) photo‐oxidizable series mechanism of Zn‐tpp. Kinetic data were measured by near‐IR spectroscopy and photo‐differential scanning calorimetry based on an equivalent concentration of excited state PS. We report that the photo‐oxidizable series mechanism using Zn‐tpp produced dramatically enhanced conversions and rates of polymerizations compared with those associated with the photo‐reducible series mechanism using CQ. It was concluded from the kinetic results that the photo‐oxidizable series mechanism efficiently retards back electron transfer and the recombination reaction step. In addition, the photo‐oxidizable series mechanism provides an efficient secondary reaction step that involves consumption of the dye‐based radical and regeneration of the original PS. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3131–3141, 2009 相似文献
5.
Light‐induced controlled free radical polymerization of methacrylates using iron‐based photocatalyst in visible light 下载免费PDF全文
Ankushi Bansal Pawan Kumar Chandra D. Sharma Siddharth S. Ray Suman L. Jain 《Journal of polymer science. Part A, Polymer chemistry》2015,53(23):2739-2746
A novel visible light mediated catalytic system based on low cost iron complex, that is, Fe(bpy)3(PF)6 photocatalyst that initiates and control the free radical polymerization of methacrylates using ethyl α‐bromoisobutyrate (EBriB) as an initiator and 20 watt LED as light source is developed. The polymerization is initiated with turning the light on and immediately terminated by turning the light off. In addition, the molecular weight of polymer can be varied by changing the ratio of monomer and initiator. The merits of the present methodology lie in the use of low cost less precious, highly abundant iron‐based photocatalyst, avoidance of sacrificial donor and need of lower catalyst amount under visible light. The optimum amount of catalyst and initiator were established and successful polymerization of various methacrylates was achieved under the optimized polymerization conditions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2739–2746 相似文献
6.
Roman Popielarz Otmar Vogt 《Journal of polymer science. Part A, Polymer chemistry》2008,46(11):3519-3532
Effect of coinitiator structure on relative initiation efficiency of two‐component Eosin/coinitiator systems has been evaluated quantitatively in polymerization of poly(ethylene glycol) diacrylate as an example monomer. The initiation efficiency has been measured by the Fluorescence Probe Technique (FPT), using Eosin both as a photoinitiator component and as a fluorescent probe. A LED/fiber optic‐based measurement system has been developed and applied in this study. It has been found that from among 17 compounds tested, the following coinitiators form most efficient photoinitiating systems in combination with Eosin, when exposed to visible light: coinitiator, relative efficiency = triethanolamine, 1.0; 2,6‐diisopropyl‐N,N‐dimethylaniline, 0.70; 2‐benzyl‐2‐(dimethylamino)‐4′‐morpholinobutyrophenone (Irgacure 369), 0.91; carbon tetrabromide, 2.1; [4‐[(2‐hydroxytetradecyl)oxy]phenyl]phenyliodonium hexafluoroantimonate (SarCat 1012), 28. These relative efficiencies refer to the following component concentrations: [Eosin] = 8.6 × 10?4 M, (0.05% by weight); [coinitiator] = 4.3 × 10?2 M. The factors affecting the initiation efficiency of the systems studied are discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3519–3532, 2008 相似文献
7.
James V. Crivello 《Journal of polymer science. Part A, Polymer chemistry》2009,47(3):866-875
This communication reports the development of an efficient three‐component visible light sensitive photoinitiator system for the cationic ring‐opening photopolymerization of epoxide monomers and epoxide functional oligomers. The photoinitiator system consists of camphorquinone in combination with a benzyl alcohol to generate free radicals by the absorption of visible light. Subsequently, the radicals participate in the free radical chain induced decomposition of a diaryliodonium salt. The resulting strong Brønsted acid derived from this process catalyzes the cationic ring‐opening polymerization of a variety of epoxide substrates. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 866–875, 2009 相似文献
8.
A benzophenone‐naphthalimide derivative as versatile photoinitiator of polymerization under near UV and visible lights 下载免费PDF全文
Jing Zhang Nicolas Zivic Frédéric Dumur Pu Xiao Bernadette Graff Didier Gigmes Jean Pierre Fouassier Jacques Lalevée 《Journal of polymer science. Part A, Polymer chemistry》2015,53(3):445-451
A benzophenone‐naphthalimide derivative (BPND) bearing tertiary amine groups has been developed as a high‐performance photoinitiator in combination with 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine or an iodonium salt for both the free radical polymerization (FRP) of acrylates and the cationic polymerization (CP) of epoxides upon exposure to near UV and visible LEDs (385–470 nm). BPND can even produce radicals without any added hydrogen donor. The photochemical mechanisms are studied by molecular orbital calculations, steady state photolysis, electron spin resonance spin trapping, fluorescence, cyclic voltammetry and laser flash photolysis techniques. These novel BPND based photoinitiating systems exhibit an efficiency higher than that of the well‐known camphorquinone‐based systems (FRP and CP) or comparable to that of bis(2,4,6‐trimethylbenzoyl)‐phenylphosphineoxide (FRP at λ ≤ 455 nm). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 445–451 相似文献
9.
Hisatoshi Kura Hidetaka Oka Masaki Ohwa Tadayoshi Matsumura Akira Kimura Yohei Iwasaki Teruhisa Ohno Michio Matsumura Hisao Murai 《Journal of Polymer Science.Polymer Physics》2005,43(13):1684-1695
Thiol‐substituted α‐aminoalkylphenone was newly developed as a radical photoinitiator. Introduction of the thiol group drastically improved photosensitivity in an alkaline developable resist formulation composed of a prepolymer and a multifunctional acrylate monomer. The improvement in the photocuring speed was explained by a mechanism based on chain transfer reaction of the thiol group. Time‐resolved electron spin resonance (ESR) spectroscopy indicated that the thiol group attached to the chromophore does not influence the photochemical process to generate primary radicals. The photoinitiation of α‐aminoalkylphenone can be spectrally sensitized by 2,4‐diethylthioxanthone (DETX). However, thiol‐substituted α‐aminoalkylphenone showed smaller spectral sensitization than the corresponding compound without a thiol group. Time resolved laser flash photolysis indicated that the rate constant of the quenching of the triplet state of DETX by thiol‐substituted α‐aminoalkylphenone is twice as large as that by the corresponding one without a thiol group. This suggests that, besides energy transfer from DETX in the excited triplet state to the α‐aminoalkylphenone, the thiol group quenches the excited triplet state of DETX via charge transfer and/or hydrogen transfer, as supported by the ESR analysis using a spin trapping technique, and lowers the efficiency of the spectral sensitization effect. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1684–1695, 2005 相似文献
10.
T. Brian Cavitt Brian Phillips Charles E. Hoyle Bo Pan Sukhendu B. Hait Kalyanaraman Viswanathan Sonny Jnsson 《Journal of polymer science. Part A, Polymer chemistry》2004,42(16):4009-4015
Three‐component photoinitiators comprised of an N‐arylphthalimide, a diarylketone, and a tertiary amine were investigated for their initiation efficiency of acrylate polymerization. The use of an electron‐deficient N‐arylphthalimide resulted in a greater acrylate polymerization rate than an electron‐rich N‐arylphthalimide. Triplet energies of each N‐arylphthalimide, determined from their phosphorescence spectra, and the respective rate constants for triplet quenching by the N‐arylphthalimide derivatives (acquired via laser flash photolysis) indicated that an electron–proton transfer from an intermediate radical species to the N‐arylphthalimide (not energy transfer from triplet sensitization) is responsible for generating the initiating radicals under the conditions and species concentrations used for polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4009–4015, 2004 相似文献
11.
Dongkwan Kim Alec B. Scranton Jeffrey W. Stansbury 《Journal of polymer science. Part A, Polymer chemistry》2009,47(5):1429-1439
We investigated the formation of ground‐state donor/acceptor complexes between xanthene dyes [rose bengal (RB) and fluorescein (FL)] and a diphenyliodonium (DPI) salt, which is dissolved in 2‐hydroxyethyl methacrylate (HEMA) monomer. To characterize the association constant of the complex, we have suggested a new analysis model based upon the Benesi–Hildebrand model. Because the assumption of the original Benesi–Hildebrand model is that the absorption bands are only due to the presence of the complex and that the absorption by the free component is negligible, the model cannot be applied to our systems, which is a dye‐based initiator system. For each dye, the molar absorptivity of the ground‐state complex was evaluated as a function of wavelength, and this analysis confirmed the validity of the modified Benesi–Hildebrand model. In addition, we observed that the RB/DPI photoinitiator system failed to produce a perceptible polymerization rate but the FL/DPI photoinitiator system provided high rates of polymerization. On the basis of the association constant for these complexes, we concluded that the observed kinetic differences arise from the different association constant values of the ground‐state dye‐acceptor complex, resulting in back‐electron transfer reaction. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1429–1439, 2009 相似文献
12.
C. Valderas S. Bertolotti C. M. Previtali M. V. Encinas 《Journal of polymer science. Part A, Polymer chemistry》2002,40(16):2888-2893
The polymerization of methyl methacrylate photoinitiated by 2‐chlorothioxanthone in the presence of amines of different structures has been investigated. The photoinitiation efficiency of these systems is highly dependent on the structure of the amine. The polymerization rate increases with the amine concentration, reaching a constant value in an amine concentration range of 10–30 mM. At these amine concentrations, aliphatic hydroxyalkyl amines are more efficient photoinitiators than the corresponding alkyl‐substituted compounds. Dimethylanilines with electron‐acceptor substituents in the 4‐position give higher polymerization rates than electron‐donor‐substituted anilines. The photophysics of these photoinitiation systems has been studied in the polymerization medium. These data show that the singlet and triplet excited states of thioxanthones are efficiently deactivated by the amine. Rate constants are well correlated to the oxidation potential of the amine. These studies have allowed us to simulate the dependence of the photoinitiation efficiency with the amine concentration and indicate that the active radicals are produced from the interaction of the ketone triplet with the amine. Also, photochemical studies have allowed us to establish that the dependence of the polymerization rate on structural features of amines is mainly due to differences in the fraction of produced active radicals that add to the monomer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2888–2893, 2002 相似文献
13.
Janina Kabatc Katarzyna Kostrzewska Katarzyna Jurek Martyna Kozak Alicja Balcerak Łukasz Orzeł 《Journal of polymer science. Part A, Polymer chemistry》2017,55(3):471-484
In this article, the ability of two‐component photoinitiator systems for efficient polymerization of 2‐ethyl‐2‐(hydroxymethyl)?1,3‐propanediol triacrylate was presented. The photophysics and photochemistry of squaraine dyes in the presence of an electron donor as well as an electron acceptor was investigated, and it was found that the photosensitizer in an excited state might act as an electron acceptor or an electron donor. The excited states of squaraines may be quenched by tetramethylammonium n‐butyltriphenylborate ( B2 ), diphenyliodonium chloride ( I1 ), and N‐methoxy‐4‐phenylpyridinium tetrafluoroborate ( NO ). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 471–484 相似文献
14.
Novel panchromatic photopolymerizable matrices: N,N'‐dibutylquinacridone as an efficient and versatile photoinitiator 下载免费PDF全文
Jing Zhang Frédéric Dumur Mariem Bouzrati Pu Xiao Céline Dietlin Fabrice Morlet‐Savary Bernadette Graff Didier Gigmes Jean Pierre Fouassier Jacques Lalevée 《Journal of polymer science. Part A, Polymer chemistry》2015,53(14):1719-1727
N,N'‐dibutylquinacridone (DBQA) is utilized here for the first time as a high‐performance panchromatic photoinitiator for the cationic polymerization (CP) of epoxides, the free radical polymerization (FRP) of acrylates, the thiol‐ene polymerization and the synthesis of interpenetrated polymer networks (epoxide/acrylate) under violet, blue, green and yellow lights (emitted from LED at 405 nm, 470 nm, 520 nm, or 594 nm, or laser diode at 532 nm). It confers a panchromatic character to the photopolymerizable matrices. Remarkably, the proposed DBQA based photoinitiating systems exhibit quite excellent efficiency (the final monomer conversion for multifunctional monomers at room temperature can reach 62% and 50% in CP and FRP, respectively) and appear as much more powerful than the camphorquinone or Eosin‐Y containing reference systems for visible light. For green light, DBQA is much more reactive than the literature reference (Eosin‐Y) and for blue light, a good reactivity is found compared with camphorquinone. The photochemical mechanisms are studied by molecular orbital calculations, steady state photolysis, fluorescence, cyclic voltammetry, laser flash photolysis, and electron spin resonance spin trapping techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1719–1727 相似文献
15.
《先进技术聚合物》2018,29(8):2264-2272
A new benzodioxole derivative, 4‐(1,3‐benzodioxol‐5‐yloxy) benzophenone (BPBDO), based on benzophenone and sesamol was precisely synthesized, and it can be used as a 1‐component type II photoinitiator. Elementary analysis, atmospheric pressure chemical ionization mass spectrometry, 1H nuclear magnetic resonance, and 13C nuclear magnetic resonance studies revealed that the molecular structure of BPBDO consisted of both benzophenone (BP) and benzodioxole (BDO) structures. The laser flash photolysis experiments and electron spin resonance test indicated that the process of radicals generated from BPBDO after irradiation was similar to 3 processes of ethyl 4‐dimethylaminobenzoate and BP. The kinetics of photopolymerization of the photoinitiator was also studied by real‐time infrared spectroscopy. The oxygen content, light intensity, and viscosity of the monomer affected the decomposition (Rd) and polymerization rate, and the final double bond conversion was also studied. All the results suggest that BPBDO is a 1‐component photoinitiator that is an efficient photoinitiator for free radical polymerization. In contrast to typical dual‐component photoinitiators, eg, BP/ethyl 4‐dimethylaminobenzoate or BP/BDO, BPBDO does not require an additional amine coinitiator for the initiation and is applicable in nonamine resin systems. 相似文献
16.
Woo-Soo Kim Ruth Houbertz Tae-Ho Lee Byeong-Soo Bae 《Journal of Polymer Science.Polymer Physics》2004,42(10):1979-1986
Inorganic–organic hybrid polymers have been developed and tested for evaluation in optical and electrical applications. Although hybrid inorganic–organic polymers can be synthesized by sol–gel chemistry at first, the physical properties of hybrid inorganic–organic polymers are changed during thin film-making processes, that is, photocuring and thermal curing. To investigate the effect of photoinitiator on the material properties during processing, a model system containing methacrylic groups as organically polymerizable units was selected. The conversion of CC double bond of methacrylic groups depending on some kinds of photoinitiator quantities was characterized by Fourier transform infrared spectroscopy. It was confirmed to correlate the degree of CC double bond conversion with the refractive indices. Thermodynamically, the enthalpy of the photopolymerization of hybrid polymer was investigated by UV–DSC. UV–DSC spectra showed the exothermic nature of photopolymerization of ORMOCER® to be in dependence of photoinitiator quantities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1979–1986, 2004 相似文献
17.
Koichi Kawamura Christian Ley Julien Schmitt Maxime Barnet Xavier Allonas 《Journal of polymer science. Part A, Polymer chemistry》2013,51(20):4325-4330
A new visible light photoinitiating system (PIS) containing a linked dye‐coinitiator dyad and a nondissociative electron donor was evaluated and compared with unlinked three components systems. Our results show that in the physical mixture of the three component PIS, addition of the nondissociative donor decreased the Rp to a great extent, whereas in combination with the dyads an increase in Rp is observed. The results were explained based on faster intramolecular electron transfer in linked pairs and point out the importance of linked initiator in three‐component PIS for the first time. This system is the first example of three‐components system with a nondissociative donor that would be useful for long life coating formulation. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4325–4330 相似文献
18.
Andreas Mautner Xiaohua Qin Barbara Kapeller Guenter Russmueller Thomas Koch Juergen Stampfl Robert Liska 《Macromolecular rapid communications》2012,33(23):2046-2052
Vinyl carbonates have recently been identified as a suitable alternative to (meth)acrylates, especially due to the low irritancy and cytotoxicity of these monomers. The drawback of some vinyl carbonates containing abstractable hydrogens arises through their moderate reactivity compared with acrylates. Within this paper, we use the thiol‐ene concept to enhance the photoreactivity of vinyl carbonates to a large extent to reach the level of those of similar acrylates. Mechanical properties of the final thiol‐ene polymers were determined by nanoindentation. Furthermore, low toxicity of all components was confirmed by osteoblast cell culture experiments. 相似文献
19.
Hongyu Wang Jun Wei Xuesong Jiang Jie Yin 《Journal of polymer science. Part A, Polymer chemistry》2006,44(12):3738-3750
In a continuation of research on chemically bonded photoinitiators comprising a structure of planar N‐phenylmaleimide (NPMI) and benzophenone (BP), a novel, highly efficient, polymerizable, sulfur‐containing photoinitiator, 4‐[(4‐maleimido)thiophenyl]benzophenone (MTPBP), was synthesized by the introduction of an NPMI group into BP. Another chemically bonded photoinitiator, 4‐[(4‐maleimido)phenoxy]benzophenone (MPBP), was selected to evaluate its photoefficiency. The results showed that MTPBP possessed a greatly redshifted UV maximal absorption and a very weak fluorescence emission. Electron spin resonance spectra indicated that the C? S bond in its molecule underwent photolysis reactions to generate radicals to initiate the polymerization. Three representative types of different functionality monomers—methyl methacrylate, 1,6‐hexanediol diacrylate, and trimethylolpropane triacrylate—were chosen to be initiated through dilatometry and differential scanning photocalorimetry with unsaturated tertiary amine N,N‐dimethylaminoethyl methacrylate as the coinitiator. The results showed surprisingly high efficiency of MTPBP due to the mutual influence between NPMI and BP as in their physical mixtures and photolysis reactions at the C? S bond. Both MPBP and MTPBP behaved with similar regularity toward different monomers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3738–3750, 2006 相似文献
20.
James V. Crivello Jinseo Ahn 《Journal of polymer science. Part A, Polymer chemistry》2003,41(16):2556-2569
A new, simplified method has been developed for the synthesis of S,S‐dialkyl‐S‐(dimethylhydroxyphenyl)sulfonium salt cationic photoinitiators. This novel method has successfully been used for the preparation of S,S‐dialkyl‐S‐(3,5‐dimethyl‐4‐hydroxyphenyl)sulfonium and S,S‐dialkyl‐S‐(3,5‐dimethyl‐2‐hydroxyphenyl)sulfonium salts showing a wide variation in the length and structure of the alkyl chains on the positively charged sulfur atom. These photoinitiators can also be prepared with a wide variety of different anions. The manipulation of the lengths of the alkyl chains permits the design of compatible photoinitiators for highly nonpolar monomers and oligomers such as epoxy‐functional silicones, epoxidized polybutadiene, and epoxidized vegetable oils. This article describes the synthesis and characterization of these photoinitiators. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2556–2569, 2003 相似文献