首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Photocatalytic 2-iodoethanol (IEO) coupling provides 1,4-butanediol (BDO) of particular interest to produce degradable polyesters. However, the reduction potential of IEO is too negative (−1.9 vs NHE) to be satisfied by most of the semiconductors, and the kinetics of transferring one electron for IEO coupling is slow. Here we design a catalytic Ni complex, which works synergistically with TiO2, realizing reductive coupling of IEO powered by photo-energy. Coordinating by terpyridine stabilizes Ni2+ from being photo-deposited to TiO2, thereby retaining the steric configuration beneficial for IEO coupling. The Ni complex can rapidly extract electrons from TiO2, generating a low-valent Ni capable of reducing IEO. The photocatalytic IEO coupling thus provides BDO in 72 % selectivity. By a stepwise procedure, BDO is obtained with 70 % selectivity from ethylene glycol. This work put forward a strategy for the photocatalytic reduction of molecules requiring strong negative potential.  相似文献   

2.
The generalized Langevin equations are presented by considering such microscopic motions of molecules described by the microscopic Hamiltonian whose potential function is quadratic and internal degree of freedom is multidimensional. Considering the long time behavior of the reactive mode, the Grote-Hynes equation has been derived from the generalized Langevin equations. Furthermore, we have proved that solving the Grote-Hynes equation is equivalent to solving the eigenvalue problem for the whole system, and then the Grote-Hynes treatment coincides with the transition-state theory for the whole system. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
The fermion unitary group formulation (UGF ) of many-body theory is based on the unitary group U(2n) where n is the number of freeon orbitals. This formulation, which conserves particle-number but not spin, is isomorphic to the particle-number-conserving, second-quantized formulation (SQF ). In UGF we derive the familiar diagrammatic algorithm for matrix elements, M(Y) = (?1)H+L where H and L denote the numbers of hole lines and loops in the diagram D(Y) of M(Y). The unitary group derivation is considerably simpler than is the conventional, second-quantized derivation that employs time-dependence, Wick's theorem, normal-order, and contractions. In neither fermion UGF nor SQF is spin conserved. We carry out in UGF the spin-projection (symmetry adaptation to SU (2)) of the fermion vectors and obtain with a spin-free Hamiltonian the same matrix elements as with the freeon UGF (part 24 of this series). The fermion unitary group formulation for a spin-free Hamiltonian should be regarded as an alternate path to spin-free quantum chemistry.  相似文献   

4.
The use of generalized internal coordinates for the variational calculation of excited vibrational states of symmetrical bent triatomic molecules is considered with applications to the SO2, O3, NO2, and H2O molecules. These coordinates depend on two external parameters which can be properly optimized. We propose a simple analytical method to determine the optimal internal coordinates for this kind of molecules based on the minimization with respect to the external parameters of the zero-point energy, assuming only quadratic terms in the Hamiltonian and no quadratic coupling between the optimal coordinates. The optimal values of the parameters thus obtained are shown to agree quite well with those that minimize the sum of a number of unconverged energies of the lowest vibrational states, computed variationally using a small basis function set. The unconverged variational calculation uses a basis set consisting of the eigenfunctions of the uncoupled anharmonic internal coordinate Hamiltonian. Variational calculations of the excited vibrational states for the four molecules considered carried out with an increasing number of basis functions, also evidence the excellent convergence properties of the optimal internal coordinates versus those provided by other normal and local coordinate systems.  相似文献   

5.
Very accurate variational calculations with the free iterative-complement-interaction (ICI) method for solving the Schrodinger equation were performed for the 1sNs singlet and triplet excited states of helium atom up to N=24. This is the first extensive applications of the free ICI method to the calculations of excited states to very high levels. We performed the calculations with the fixed-nucleus Hamiltonian and moving-nucleus Hamiltonian. The latter case is the Schrodinger equation for the electron-nuclear Hamiltonian and includes the quantum effect of nuclear motion. This solution corresponds to the nonrelativistic limit and reproduced the experimental values up to five decimal figures. The small differences from the experimental values are not at all the theoretical errors but represent the physical effects that are not included in the present calculations, such as relativistic effect, quantum electrodynamic effect, and even the experimental errors. The present calculations constitute a small step toward the accurately predictive quantum chemistry.  相似文献   

6.
It is intended to derive the Ginzburg–Landau (GL) equation directly from the Bardeen–Cooper–Schrieffer (BCS) Hamiltonian. By the use of the Hubbard–Stratonovitch transformation, the electron–electron interaction composed of four fermion operators is eliminated to yield an auxiliary boson field. This is an effective field in which electrons behave as if they were free. In applying the path integral method, the electron field is integrated out to remain the Lagrangian for this boson field. The symmetry breaking and the phase transition of the system described by this field are discussed, and it is shown that this boson field turns out to be the GL order parameter. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 69: 693–703, 1998  相似文献   

7.
We report calculations using a reaction surface Hamiltonian for which the vibrations of a molecule are represented by 3N-8 normal coordinates, Q, and two large amplitude motions, s(1) and s(2). The exact form of the kinetic energy operator is derived in these coordinates. The potential surface is first represented as a quadratic in Q, the coefficients of which depend upon the values of s(1),s(2) and then extended to include up to Q(6) diagonal anharmonic terms. The vibrational energy levels are evaluated by solving the variational secular equations, using a basis of products of Hermite polynomials and appropriate functions of s(1),s(2). Our selected example is malonaldehyde (N=9) and we choose as surface parameters two OH distances of the migrating H in the internal hydrogen transfer. The reaction surface Hamiltonian is ideally suited to the study of the kind of tunneling dynamics present in malonaldehyde. Our results are in good agreement with previous calculations of the zero point tunneling splitting and in general agreement with observed data. Interpretation of our two-dimensional reaction surface states suggests that the OH stretching fundamental is incorrectly assigned in the infrared spectrum. This mode appears at a much lower frequency in our calculations due to substantial transition state character.  相似文献   

8.
The exact short time propagator, in a form similar to the Crank-Nicholson method but in the spirit of spectrally transformed Hamiltonian, was proposed to solve the triatomic reactive time-dependent schrödinger equation. This new propagator is exact and unconditionally convergent for calculating reactive scattering processes with large time step sizes. In order to improve the computational efficiency, the spectral difference method was applied. This resulted the Hamiltonian with elements confined in a narrow diagonal band. In contrast to our previous theoretical work, the discrete variable representation was applied and resulted in full Hamiltonian matrix. As examples, the collision energy-dependent probability of the triatomic H+H2 and O+O2 reaction are calculated. The numerical results demonstrate that this new propagator is numerically accurate and capable of propagating the wave packet with large time steps. However, the efficiency and accuracy of this new propagator strongly depend on the mathematical method for solving the involved linear equations and the choice of preconditioner.  相似文献   

9.
The intermediate Hamiltonian multireference coupled-cluster (CC) method with singles, doubles, and triples within the excited (1,1) sector of Fock space (FS) is implemented and formulated to calculate excitation energies (EEs). Due to the intermediate Hamiltonian formulation, which provides a robust computational scheme for solving the FS-CC equations, coupled to an efficient factorization strategy, relatively large basis sets and model spaces are employed permitting basis set converged comparisons of the calculated vertical EEs, which can be compared to the experimental data for the N(2) and CO molecules. The issue of charge-transfer separability is also addressed.  相似文献   

10.
We propose a lattice fermion model suitable for studying the ultrafast photoexcitation dynamics of ordered chains of deoxyribonucleic acid (DNA) polymers. The model includes both parallel (intrachain) and perpendicular (cross-chain) terms as well as diagonal cross-chain terms coupling neighboring bases. The general form of our Hamiltonian is borrowed from lattice fermion models of quantum chromodynamics. The band structure for this model can be determined analytically, and we use this as a basis for computing the singly excited states of the poly(dA)poly(dT) DNA duplex using configuration interaction singles. Parameters for the model are taken from various literature sources and our own ab initio calculations. Results indicate that the excited states consist of a low energy band of dark charge-separated states followed by separate bands of delocalized excitonic states which have weak mixing between the thymidine and adenosine sides of the DNA chain. We then propose a lattice exciton model based upon the transition dipole-dipole couplings between bases and compare the analytical results for the survival probability of an initially localized exciton to exact numerical results. The results herein underscore the competing role of excitonic and charge-transfer dynamics in these systems.  相似文献   

11.
The intermediate Hamiltonian Fock-space coupled-cluster (FS-CC) method with singles and doubles is applied to calculate vertical excitation energies (EEs) for some molecular systems. The calculations are performed for several small molecules, such as H2O, N2, and CO, and for larger systems, such as C2H4, C4H6, and C6H6. Due to the intermediate Hamiltonian formulation, which provides a robust computational scheme for solving the FS-CC equations, and the efficient factorization strategy, relatively large basis sets and model spaces are employed permitting a comparison of the calculated vertical EEs with the experimental data.  相似文献   

12.
The accuracy of the relativistic free complement (FC) method, which was previously reported for solving the Dirac?CCoulomb equations of atoms and molecules, has been strictly examined with the applications to hydrogen isoelectronic atoms. The FC wave function grown up by the Hamiltonian automatically takes care of the correct relationship between large and small components, i.e., FC or ICI balance. Combining the FC method with the inverse Hamiltonian method can help to obtain correct solutions safely against to several obstacles characteristic to the Dirac?CCoulomb equation. To ensure the exactness of the obtained wave function, we examined the total square deviation from the exact wave function, local energy constancy, H-square error, and energy upper and lower bounds for hydrogen-like atoms.  相似文献   

13.
The supersymmetric solutions of PT-/non-PT-symmetric and non-Hermitian deformed Morse and Pöschl-Teller potentials are obtained by solving the Schrödinger equation. The Hamiltonian hierarchy method is used to get the real energy eigenvalues and corresponding eigenfunctions.  相似文献   

14.
Multilevel augmentation method with wavelet bases is demonstrated to show as the fast technique for solving singularly perturbed problems. Linear and quadratic wavelet bases are employed for constructing the full form of matrix system. To reduce the size of matrix coefficients, the multilevel augmented technique is applied at each current basis level. It is found that the multilevel augmentation method is faster than the standard multilevel method at the same order of accuracy. Convergent rates for linear and quadratic bases are 2 and 4 respectively. By the application of wavelet bases, numerical accuracy can be easily improved by increasing just desired levels in the multilevel augmentation process.  相似文献   

15.
We introduce new ideas for calculating resonance energies and widths. It is shown that a non-Hermitian-Lanczos approach can be used to compute eigenvalues of H+W, where H is the Hamiltonian and W is a complex absorbing potential (CAP), without evaluating complex matrix-vector products. This is done by exploiting the link between a CAP-modified Hamiltonian matrix and a real but nonsymmetric matrix U suggested by Mandelshtam and Neumaier [J. Theor. Comput. Chem. 1, 1 (2002)] and using a coupled-two-term Lanczos procedure. We use approximate resonance eigenvectors obtained from the non-Hermitian-Lanczos algorithm and a very good CAP to obtain very accurate energies and widths without solving eigenvalue problems for many values of the CAP strength parameter and searching for cusps. The method is applied to the resonances of HCO. We compare properties of the method with those of established approaches.  相似文献   

16.
This article presents a new complex absorbing potential (CAP) block Lanczos method for computing scattering eigenfunctions and reaction probabilities. The method reduces the problem of computing energy eigenfunctions to solving two energy dependent systems of equations. An energy independent block Lanczos factorization casts the system into a block tridiagonal form, which can be solved very efficiently for all energies. We show that CAP-Lanczos methods exhibit instability due to the non-normality of CAP Hamiltonians and may break down for some systems. The instability is not due to loss of orthogonality but to non-normality of the Hamiltonian matrix. While use of a Woods-Saxon exponential CAP-as opposed to a polynomial CAP-reduced non-normality, it did not always ensure convergence. Our results indicate that the Arnoldi algorithm is more robust for non-normal systems and less prone to break down. An Arnoldi version of our method is applied to a nonadiabatic tunneling Hamiltonian with excellent results, while the Lanczos algorithm breaks down for this system.  相似文献   

17.
The supersymmetric solutions of PT -symmetric and Hermitian/non-Hermitian forms of quantum systems are obtained by solving the Schr?dinger equation for the Exponential-Cosine Screened Coulomb potential. The Hamiltonian hierarchy inspired variational method is used to obtain the approximate energy eigenvalues and corresponding wave functions.   相似文献   

18.
An investigation of the relativistic dynamics of N+1 spin-12 particles placed in an external, homogeneous magnetic field is carried out. The system can represent an atom with a fermion nucleus and N electrons. Quantum electrodynamical interactions, namely, projected Briet and magnetic interactions, are chosen to formulate the relativistic Hamiltonian. The quasi-free-particle picture is retained here. The total pseudomomentum is conserved, and its components are distinct when the total charge is zero. Therefore, the center-of-mass motion can be separated from the Hamiltonian for a neutral (N+1)-fermion system, leaving behind a unitarily transformed, effective Hamiltonian H(0) at zero total pseudomomentum. The latter operator represents the complete relativistic dynamics in relative coordinates while interaction is chosen through order alpha4mc2. Each one-particle part in the effective Hamiltonian can be brought to a separable form for positive- and negative-energy states by replacing the odd operator in it through two successive unitary transformations, one due to Tsai [Phys. Rev. D 7, 1945 (1973)] and the other due to Weaver [J. Math. Phys. 18, 306 (1977)]. Consequently, the projector changes and the interaction that involves the concerned particle also becomes free from the corresponding odd operators. When this maneuver is applied only to the nucleus, and the non-Hermitian part of the transformed interaction is removed by another unitary transformation, a familiar form of the atomic relativistic Hamiltonian H(atom) emerges. This operator is equivalent to H(0). A good Hamiltonian for relativistic quantum chemical calculations, H(Qchem), is obtained by expanding the nuclear part of the atomic Hamiltonian through order alpha4mc2 for positive-energy states. The operator H(Qchem) is obviously an approximation to H(atom). When the same technique is used for all particles, and subsequently the non-Hermitian terms are removed by suitable unitary transformations, one obtains a Hamiltonian H(T) that is equivalent to H(atom) but is in a completely separable form. As the semidiscrete eigenvalues and eigenfunctions of the one-particle parts are known, the completely separable Hamiltonian can be used in computation. A little more effort leads to the derivation of the correct atomic Hamiltonian in the nonrelativistic limit, H(nonrel). The operator H(nonrel) is an approximation to H(T). It not only retains the relativistic and radiative effects, but also directly exhibits the phenomena of electron paramagnetic resonance and nuclear magnetic resonance.  相似文献   

19.
We present a model for conductivity and energy diffusion in a linear chain described by a quadratic Hamiltonian with Gaussian noise. We show that when the correlation matrix is diagonal, the noise-averaged Liouville-von Neumann equation governing the time evolution of the system reduces to the [Lindblad, Commun. Math. Phys. 48, 119 (1976)] equation with Hermitian Lindblad operators. We show that the noise-averaged density matrix for the system expectation values of the energy density and the number density satisfies discrete versions of the heat and diffusion equations. Transport coefficients are given in terms of model Hamiltonian parameters. We discuss conditions on the Hamiltonian under which the noise-averaged expectation value of the total energy remains constant. For chains placed between two heat reservoirs, the gradient of the energy density along the chain is linear.  相似文献   

20.
Hamiltonian encoding (HE) methods have been used to understand mechanism in computational studies of laser controlled quantum systems. This work studies the principles for extending such methods to extract control mechanisms from laboratory data. In an experimental setting, observables replace the utilization of wavefunctions in computational HE. With laboratory data, HE gives rise to a set of quadratic equations for the interfering transition amplitudes, and the solution to the equations reveals the mechanistic pathways. The extraction of the mechanism from the system of quadratic equations raises questions of uniqueness and solvability, even in the ideal case without noise. Symmetries are shown to exist in the quadratic system of equations, which is generally overdetermined. Therefore, the mechanism is likely to be unique up to these symmetries. Numerical simulations demonstrate the concepts on simple model systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号