共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In this article, we have basically launched a search whether the dipole charge and dipole moment of heteronuclear diatomics can be justifiably evaluated in terms of charge transfer kernel using the hardness equalization principle as basis. We have derived a formula for computing dipole charge (q) on the basis of hardness equalization principle as q = aδ + b, where “a” and “b” are the constants and “δ” is the kernel of charge transfer from less hard atom to more hard atom during the rearrangement of charge on molecule formation. We have computed the dipole charges and dipole moments of as many as six different sets of compounds of widely diverse physicochemical behavior in terms of the algorithm derived in the present work. The computed dipole charge nicely reveals the known chemicophysical behavior of such compounds as are brought under the study. A comparative study of the nature of variation of theoretically evaluated and experimentally determined dipole moments reveals that there is an excellent agreement between the two sets of dipole data. Thus, the new algorithm derived for the calculation of the dipole charge using the hardness equalization principle as a basis is efficacious in computing the distribution and rearrangement of charge associated with the chemical event of molecule formation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011 相似文献
5.
电负性是分子中一个原子把电子拉向它自身的能力,是化学理论的基本概念之一。继Pauling建立第一个电负性标度后,提出了众多的电负性标度。只是在密度泛函理论的基础上,电负性概念和电负性均衡原理,才被精密地论证。近二十多年来,电负性理论的重要发展是:应用电负性均衡模型或方法,可以快速地计算分子体系的电荷分布,从而确定分子的其他性质,甚至包括分子的结构和反应性指标。通常的电负性均衡方法只把分子划分到原子区域,虽然简单直观,但其精度和应用范围受到限制。原子与键电负性均衡方法,把分子划分到包括原子区域、化学键区域和孤对电子区域,能够较快速精密地计算分子的电荷分布和其他性质,并被应用到构建新一代可极化或浮动电荷力场的探索中,有广阔的应用前景。 相似文献
6.
7.
8.
The experimental approaches to estimation of comparative electronegativity and chemical hardness of organometallic groups have been proposed. Qualitative data on the electronegativity of L nM groups were obtained from 19F NMR study of model systems 4‐FC6H4QMLn (Q = CC, N(R), O, C(O)O, S), (4‐FC6H4)3 SnML n and (4‐FC6H4)3SnQML n (Q = O, S), containing a great variety of different organometallic groups containing transition or heavy main‐group metals. The data on chemical hardness of L nM groups were obtained from NMR study of distribution of different L nM groups between hard and soft anions. The following basic results have been obtained. (1) The relative electronegativity and chemical hardness of L nM groups can change in parallel or not with the electronegativity and hardness of the central metal atom. (2) The substituents in Ar can substantially modify electronegativity and hardness of Ar nM groups; the influence of Ar groups has an inductive nature; the increase in electron‐donating ability of aryl ligands enhances the hardness of Ar nM cations. (3) The relative electronegativity and hardness of L nM groups in L nMX are invariant and do not depend on X. 相似文献
9.
原子-键电负性均衡方法(ABEEM)是以密度泛函理论(DFT)和电负性均衡原理为基础发展而来,它明确地考虑了化学键是不引入任何实验数据的带纯理论性和计算的方法.使用统一标准并具有代表性和全面性地选择了200多个模型分子,利用可得到较准确结构的MP2/6-31G*优化结构,心/STO-3G单点计算得到Mulliken重叠布居,再用最小二乘法拟合得到许多主族元素在分子体系中的诸原子(包括单、双和叁键等不同成键状态)和化学键的ABEEM参数.所得到的原子的价态电负性可与已提出的其他电负性标度相比拟,计算CO得到的电荷负端为C(与从头计算的结果相反),结果与实验相符,且原子电荷的正负不完全由原子电负性决定. 相似文献
10.
We present an approach for calculating local electric dipole moments for fragments of molecular or supramolecular systems. This is important for understanding chemical gating and solvent effects in nanoelectronics, atomic force microscopy, and intensities in infrared spectroscopy. Owing to the nonzero partial charge of most fragments, “naively” defined local dipole moments are origin‐dependent. Inspired by previous work based on Bader's atoms‐in‐molecules (AIM) partitioning, we derive a definition of fragment dipole moments which achieves origin‐independence by relying on internal reference points. Instead of bond critical points (BCPs) as in existing approaches, we use as few reference points as possible, which are located between the fragment and the remainder(s) of the system and may be chosen based on chemical intuition. This allows our approach to be used with AIM implementations that circumvent the calculation of critical points for reasons of computational efficiency, for cases where no BCPs are found due to large interfragment distances, and with local partitioning schemes other than AIM which do not provide BCPs. It is applicable to both covalently and noncovalently bound systems. © 2016 Wiley Periodicals, Inc. 相似文献
11.
De Proft F Van Alsenoy C Peeters A Langenaeker W Geerlings P 《Journal of computational chemistry》2002,23(12):1198-1209
In the Hirshfeld partitioning of the electron density, the molecular electron density is decomposed in atomic contributions, proportional to the weight of the isolated atom density in the promolecule density, constructed by superimposing the isolated atom electron densities placed on the positions the atoms have in the molecule. A maximal conservation of the information of the isolated atoms in the atoms-in-molecules is thereby secured. Atomic charges, atomic dipole moments, and Fukui functions resulting from the Hirshfeld partitioning of the electron density are computed for a large series of molecules. In a representative set of organic and hypervalent molecules, they are compared with other commonly used population analysis methods. The expected bond polarities are recovered, but the charges are much smaller compared to other methods. Condensed Fukui functions for a large number of molecules, undergoing an electrophilic or a nucleophilic attack, are computed and compared with the HOMO and LUMO densities, integrated over the Hirshfeld atoms in molecules. 相似文献
12.
Local dipole moments (i.e., dipole moments of atomic or molecular subsystems) are essential for understanding various phenomena in nanoscience, such as solvent effects on the conductance of single molecules in break junctions or the interaction between the tip and the adsorbate in atomic force microscopy. We introduce Gen Loc Dip , a program for calculating and visualizing local dipole moments of molecular subsystems. Gen Loc Dip currently uses the Atoms‐In‐Molecules (AIM) partitioning scheme and is interfaced to various AIM programs. This enables postprocessing of a variety of electronic structure output formats including cube and wavefunction files, and, in general, output from any other code capable of writing the electron density on a three‐dimensional grid. It uses a modified version of Bader's and Laidig's approach for achieving origin‐independence of local dipoles by referring to internal reference points which can (but do not need to be) bond critical points (BCPs). Furthermore, the code allows the export of critical points and local dipole moments into a POVray readable input format. It is particularly designed for fragments of large systems, for which no BCPs have been calculated for computational efficiency reasons, because large interfragment distances prevent their identification, or because a local partitioning scheme different from AIM was used. The program requires only minimal user input and is written in the Fortran 90 programming language. To demonstrate the capabilities of the program, examples are given for covalently and non‐covalently bound systems, in particular molecular adsorbates. © 2016 Wiley Periodicals, Inc. 相似文献
13.
Some symmetrical dimeric compounds containing biphenyl, biphenylcarboxylic acid or benzoiloxyphenyl moieties and polymethylene spacers were synthesised. The mesogenic properties of the synthesised compounds were investigated by optical microscopy, calorimetric and X-ray methods. It was shown that the location and direction of the ester bonds has a crucial significance in mesophase formation. 相似文献
14.
A series of N-bonded donor-acceptor derivatives of phenothiazine containing phenyl (PHPZ), anisyl (ANPZ), pyridyl (PYPZ), naphthyl (NAPZ), acetylphenyl (APPZ), and cyanophenyl (CPPZ) as an electron acceptor have been synthesized. Their photophysical properties were investigated in solvents of different polarities by absorption and emission techniques. These studies clearly revealed the existence of an intramolecular charge transfer (ICT) excited state in the latter four compounds. The solvent dependent Stokes shift values were analyzed by the modified Lippert-Mataga equation to obtain the excited state dipole moment values. The large excited state dipole moment suggests that the full (or nearly full) electron transfer take place in the A-D systems. In the system of A-D phenothiazine derivatives, the transition dipole moments Mflu were determined mainly by direct interactions between the solvent-equilibrated fluorescence ^1CT state and ground state because of their lack of significant change with increase of the solvent polarity. The electron structure and molecular conformation of phenothiazine derivatives will be significantly changed with the increase of the electron affinity of the N-10 substituent. 相似文献
15.
We have recently developed a new Class IV charge model for calculating partial atomic charges in molecules. The new model, called Charge Model 3 (CM3), was parameterized for calculations on molecules containing H, Li, C, N, O, F, Si, S, P, Cl, and Br by Hartree-Fock theory and by hybrid density functional theory (DFT) based on the modified Perdew-Wang density functional with several basis sets. In the present article we extend CM3 to semiempirical molecular orbital theory, in particular Austin Model 1 (AM1) and Parameterized Model 3 (PM3), and to the popular BLYP and B3LYP DFT and hybrid DFT methods, respectively. For the BLYP extension, we consider the 6-31G(d) basis set, and for the B3LYP extension, we consider three basis sets: 6-31G(d), 6-31+G(d), and MIDI!6D. We begin with the previous CM3 strategy, which involves 34 parameters for 30 pairs of elements. We then refine the model to improve the charges in compounds that contain N and O. This modification, involving two new parameters, leads to improved dipole moments for amides, bifunctional H, C, N, O compounds, aldehydes, ketones, esters, and carboxylic acids; the improvement for compounds not containing N results from obtaining more physical parameters for carbonyl groups when the O=C-N conjugation of amides is addressed in the parameterization. In addition, for the PM3 method, we added an additional parameter to improve dipole moments of compounds that contain bonds between C and N. This additional parameter leads to improved accuracy in the dipole moments of aromatic nitrogen heterocycles with five-membered rings. 相似文献
16.
以密度泛函理论和电负性均衡原理为基础,应用修正的电负性均衡方法,并自编程序,用最小二乘法,拟合确定了H,C,O,N,F和Cl以及S等各种类型原子的价态电负性、价态硬度和能量的相关参数;从电负性均衡原理的观点,利用这些参数确定了一些青霉素基团的电负性和电荷分布,并进行了讨论. 相似文献
17.
A method for estimating dipole preserving and polarization consistent (DPPC) charges is described, which reproduces exactly the molecular dipole moment as well as the local, atomic hybridization dipoles determined from the corresponding wave function and can yield accurate molecular polarization. The method is based on a model described by Thole and van Duijnen and a new feature is introduced to treat molecular polarization. Thus, the DPPC method offers a convenient procedure to describe molecular polarization in applications using semiempirical models and ab initio molecular orbital theory with relatively small basis functions such as 6‐31+G(d,p) or without inclusion of electron correlation; these methods tend to underestimate molecular polarizability. The trends of the DPPC partial atomic charges are found to be in good accord with those of the CM2 model, a class IV charge analysis method that has been used in a variety of applications. The DPPC method is illustrated to mimic the correct molecular polarizability in a water dimer test case and in water‐halide ion complexes using the explicit polarization (X‐Pol) potential with the Austin model 1 Hamiltonian. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 相似文献
18.
将大港常压渣油利用液相色谱法分成六个组分,测定了各组分的平均偶极矩。结果表明,渣油分子具有极性,饱和分和轻芳烃组分、重芳烃、轻胶质、中胶质、重胶质、沥青质的偶极矩依次增大,分别为1.19、2.88、3.79、4.92、6.36、11.70 Debye。元素分析表明,从饱和分和轻芳烃组分到沥青质组分,H/C原子比逐渐下降,表明H/C原子比减小与平均偶极矩增大有关;从饱和分和轻芳烃组分到沥青质组分,S/C、N/C原子比总体呈现上升趋势,渣油组分的杂原子含量与其极性有一定的关系,但两者并不完全一致,渣油组分分子的平均偶极矩还受到其他因素的影响。 相似文献
19.
Dulal C. Ghosh Jibanananda Jana Soma Bhattacharyya 《International journal of quantum chemistry》2002,87(3):111-134
The physical process of the umbrella inversion of the nitrogen trifluoride molecule has been studied invoking the formalisms of the density functional theory, the frontier orbital theory, and the molecular orbital theory. An intuitive structure and dynamics of evolution of the transition state for the event of inversion is suggested. The physical process of dynamic evolution of the molecular conformations between the equilibrium (C3v) shape and the planar (D3h) transition state has been followed by a number of molecular orbital and density functional parameters like the total energy, the eigenvalues of the frontier orbitals, the highest occupied molecular orbital and lowest unoccupied molecular orbital, the (HOMO–LUMO) gap, the global hardness and softness, and the chemical potential. The molecular conformations are generated by deforming the ∠FNF angle through steps of 2° from its equilibrium value, and the cycle is continued till the planar transition state is reached, and the geometry of each conformation is optimized with respect to the length of the N? F bond. The geometry optimization demonstrates that the structural evolution entails an associated slow decrease in the length of the N? F bond. The dipole moment at the equilibrium form is small and that at the transition state is zero and shows a strange behavior with the evolution of conformations. As the molecular structure begins to distort from its equilibrium shape by opening of the ∠FNF angle, the dipole moment starts increasing very sharply, and the trend continues very near to the transition state but abruptly vanishes at the transition state. A rationale of the strange variation of dipole moment as a function of evolution of conformations could be obtained in terms of quantum mechanical hybridization of the lone pair on the N atom. The pattern of charge density reorganization as a function of geometry evolution is a continuous depletion of charge from the F center and piling up of charge on the N center. The continuous shortening of bond length and the pattern of variation of net charge densities on atomic sites with evolution of molecular conformations predicts that the bond moment would decrease continuously. The quantum mechanical hybridization of the lone pair of the central N atom shows that the percentage of s character of the lone‐pair hybrid on the N atom decreases at a very accelerated rate, and the lone pair at the transition state is accommodated in a pure p orbital. The result of the continued destruction of asymmetry of charge distribution in the lone pair on the central N atom due to the elimination of contribution of the s orbital with evolution of molecular conformations is the sharp decrease in lone‐pair moment. The decrease in bond moment is overcompensated by the sharp fall of its offsetting component, the lone‐pair moment, resulting in a net gain in dipole moment with the evolution of molecular geometry. Since the offsetting component decreases very sharply, the net effect is a sharp rise of dipole moment with the evolution of molecular conformations just before the transition state. The lone‐pair moment is zero by virtue of the symmetry of the pure p orbital, the lone pair of the central atom in the transition state, and the sum of the bond moments is zero by symmetry of the geometry. The barrier height is quite high at ~65.45 kcal/mol, which is close to values computed through more sophisticated methods. It is argued that an earlier suggestion regarding the development of high barrier value of NF3 system seems to be misleading and confronting with the conclusions of the density functional theory. An analysis and a comparative study of the physical components of the one‐ and two‐center energy terms reveals that the pattern of the charge density reorganization has the principal role in deciding the origin and the magnitude of barrier of inversion of the molecule and the barrier originates not from a particular energetic effect localized in a particular region of the molecule, rather the barrier originates from a subtle interplay of one‐ and two‐center components of the total energy. The decomposed energy components show that the F?F nonbonded interaction and N? F bonded interaction favor the formation of transition state, while the one‐center energy terms prohibit the formation of the transition state. The barrier principally develops from the one‐center energy components. The profile of the HOMO is isomorphic and that of the LUMO is homomorphic with the potential energy curve for the physical process of the event of umbrella inversion of the molecule. The variation of the HOMO–LUMO gap, ?ε, the global hardness, η, and the softness, S, as a function of the reaction coordinates of angular deformation of NF3 molecule are quite consistent with the predictions of the molecular orbital and the density functional theories in connection with the deformation of molecular geometry. The profiles of ?ε, η, and S, as a function of reaction coordinates, mimic the potential energy curve of the molecule. The eigenvalues of the frontier orbitals, and the ?ε, η, S parameters are found to be equally effective theoretical parameters, like the total energy, to monitor the physical process of the inversion of pyramidal molecules. The nature of the variation of the global hardness parameter between the equilibrium shape and the transition state form for the inversion is in accordance with the principle of maximum hardness (PMH). © 2002 John Wiley & Sons, Inc. Int J Quantum Chem, 2002 相似文献
20.