首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new model of solid‐state polymerization of nylon‐6,6 has been developed. The polymer crystalline fraction is assumed to consist of only repeat units, leaving end‐groups and condensate in the amorphous fraction. Many effects neglected by previous models are considered, such as variable crystallinity, initial moisture and starting molecular weight. This model is compared to experimental data with good agreements. Differential scanning calorimetry graphs show that the crystalline structure phase tends to be increasingly perfect during heat treatment, indicative of the premelting temperature drawing near the melting point up to 14 °C after solid‐state polycondensation with little change of melting point. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
The 1:1 stoichiometric salt monomer composed of squaric acid and bis(4‐aminophenyl) ether was successfully prepared and subjected to solid‐state thermal polycondensation under ordinary or high pressure, giving quite readily the aromatic polysquaramide with moderately high molecular weight. The polysquaramide formed was actually the random copolymer consisting of two component polymers, one of the main component being the polymer with a quasi‐aromatic mesoionic structure. The aromatic polysquaramide was crystalline and had a glass‐transition temperature of 245 °C, with an initial weight‐loss temperature of 400 °C in nitrogen. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2648–2655, 2002  相似文献   

3.
A positive working photosensitive polymer based on poly(2,6‐dihydroxy‐1,5‐naphthylene) (PDHN) with 1‐(1,1‐bis{4‐[2‐diazo‐1(2H)naphthalene‐5‐sulfonyloxy]phenyl}ethyl)‐4‐(1‐{4‐[2‐diazo‐1(2H)naphthalene‐5‐sulfonyloxy]phenyl}methylethyl) benzene (S‐DNQ) as a photosensitive compound has been developed. PDHN (number‐average molecular weight: 13,000; polydispersity index: 1.9) was prepared by oxidative coupling polymerization of the 2,6‐dihydroxynaphthalene‐benzylamine complex using iron(III) chloride hexahydrate in the solid state. A 10 wt % loss temperature of PDHN was 450 °C in air, and the film of 1 μm thickness showed excellent transparency above 400 nm. The resist system consisting of PDHN and S‐DNQ gave a clear positive pattern when it was exposed to 436 nm of light, followed by development with a 0.50 wt % aqueous tetramethylammonium hydroxide solution at 25 °C. The sensitivity (D) and contrast (γ) were 300 mJ/cm2 and 2.1, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 393–398, 2002  相似文献   

4.
5.
Composition control of aromatic poly(thioester‐amide) was examined by the reaction‐induced phase separation during polymerization of S‐acetyl‐4‐mercaptobenzoic acid (AMBA) and p‐acetylaminobenzoic acid (AABA) in aromatic solvent. The poly(thioester‐amide)s were obtained as precipitates and their yields became lower at the middle range of the content of AMBA in feed (χf). The contents of p‐mercaptobenzoyl (MB) moiety (χp) in the precipitates prepared without shearing were in good agreement with the χf values. In contrast to this, the χp values of the precipitates prepared at χf of 50–70 mol % under shearing were much lower than the χf values. The reaction rate of AMBA increased with shearing, whereas that of AABA was unchanged by shearing. This shearing effect on the reaction rates accelerated to form the homo‐oligomers. The solubility of MB oligomers enhanced by shearing, whereas that of p‐benzamide oligomers did not enhance owing to the strong interaction through hydrogen bonding. The MB oligomers were inhibited to be precipitated, resulting in the lower χp values than the χf values. The composition could be controlled by the application of the shearing to the heterogeneous polymerization. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4301–4308  相似文献   

6.
Systematic research on the synthesis, chemical oxidative polymerization of 3,4‐ethylenedithiathiophene (EDTT) in the presence of surfactants or not, and solid‐state polymerization of 2,5‐dibromo‐3,4‐ethylenedithiathiophene (DBEDTT) and 2,5‐diiodo‐3,4‐ethylenedithiathiophene (DIEDTT) under solventless and oxidant‐free conditions has been investigated. Effects of oxidants (Fe3+ salts, persulfate salts, peroxides, and Ce4+ salts), solvents (H2O, CH3CN/H2O, and CH3CN), surfactants, and so forth on polymerization reactions and properties of poly(3,4‐ethylenedithiathiophene) (PEDTT) were discussed. Characterizations indicated that FeCl3 was more suitable oxidant for oxidative polymerization of EDTT, while CH3CN was a better solvent to form PEDTT powders with higher yields and electrical conductivities. Dispersing these powders in aqueous polystyrene sulfonic acid (PSSH) solution showed better stability and film‐forming property than sodium dodecylsulfate and sodium dodecyl benzene sulfonate. Oxidative polymerization of EDTT in aqueous PSSH solutions formed the solution processable PEDTT dispersions with good storing stability and film‐forming performance. Solvent treatment showed indistinctive effect on electrical conductivity of free‐standing PEDTT films. As‐formed PEDTT synthesized from solid‐state polymerization showed similar electrical conductivity, poorer stability, but better thermoelectric property than oxidative polymerization. Contrastingly, PEDTT synthesized from DIEDTT showed higher electrical conductivity (0.18 S cm?1) than DBEDTT which showed better thermoelectric property with higher power factor value (6.7 × 10?9 W m?1 K?2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
8.
The backbone of poly(butylene terephthalate) (PBT) was modified with 2,4:3,5‐di‐O‐methylene‐D ‐glucitol (Glux) using solid‐state modification (SSM). The obtained copolyesters proved to have a non‐random overall chemical microstructure. The thermal properties of these semicrystalline, block‐like, Glux‐based materials were extraordinary, showing higher melting points, and glass transition temperatures compared with other sugar‐based copolyesters prepared by SSM. These remarkable thermal properties were a direct result of the inherently rigid structure of Glux and the relatively slow randomization of the block‐like chemical microstructure of the Glux‐based copolyesters in the melt. SSM proved to be a versatile tool for preparing partially biobased copolyesters with superior thermal properties. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 164–177  相似文献   

9.
In the current paper, a comparative study on the direct solid state polycondensation (DSSP) reaction of different terephthalate based semi‐aromatic salts (XT salts, X = 4–18) in the TGA micro‐reactor is reported. High purity XT salts were prepared in solution and were used as starting materials for DSSP. The reaction temperature (TDSSP) for each salt was suitably selected as 20 °C–30 °C below the melting point Tm of the respective salt. The PAXT products were characterized by TGA/DSC, liquid 1H‐NMR, and SEM. In the DSSP of XT salts, some diamine is always lost to the gas phase and as a consequence, the attainable molecular weight of the polymer formed gets limited by the unbalance of acid and amine end‐groups. The TGA curves show that as the diamine length increases and its volatility decreases, higher molecular weights are obtained. SEM pictures of the products reveal true solid character during the polymerization reaction up to and including PA10T, whereas PA5T, PA12T, and PA18T reveal stickiness and agglomeration during reaction. A possible mechanism explaining such behaviour is also provided. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2493–2506  相似文献   

10.
Stereoblock poly(lactic acid) consisting of D- and L-lactate stereosequences can be successfully synthesized by solid-state polycondensation of a 1:1 mixture of poly(L-lactic acid) and poly(D-lactic acid). In the first step, melt-polycondensation of L- and D-lactic acids is conducted to synthesize poly(L-lactic acid) and poly(D-lactic acid) with a medium-molecular-weight, respectively. In the next step, these poly(L-lactic acid) and poly(D-lactic acid) are melt-blended in 1:1 ratio to allow formation of their stereocomplex. In the last step, this melt-blend is subjected to solid-state polycondensation at temperature where the dehydrative condensation is allowed to promote chain extension in the amorphous phase with the stereocomplex crystals preserved. Finally, stereoblock poly(lactic acid) having high-molecular-weight is obtained. The stereoblock poly(lactic acid) synthesized by this way shows a higher melting temperature in consequence of the controlled block lengths and the resulting higher-molecular-weight. The product characterization as well as the optimization of the polymerization conditions is described. Changes in M(w) of stereoblock poly(lactic acid) (sb-PLA) as a function of the reaction time.  相似文献   

11.
Condensation polymerization of 6‐(N‐substituted‐amino)‐2‐naphthoic acid esters ( 1 ) was investigated as an extension of chain‐growth condensation polymerization (CGCP). Methyl 6‐(3,7‐dimethyloctylamino)‐2‐naphthoate ( 1b ) was polymerized at ?10 °C in the presence of phenyl 4‐methylbenzoate ( 2 ) as an initiator and lithium 1,1,1,3,3,3‐hexamethyldisilazide (LiHMDS) as a base. When the feed ratio [ 1a ]0/[ 2 ]0 was 10 or 20, poly(naphthalenecarboxamide) with defined molecular weight and low polydispersity was obtained, together with a small amount of cyclic trimer. However, polymer was precipitated during polymerization under similar conditions in [ 1a ]0/[ 2 ]0 = 34. To increase the solubility of the polymer, monomers 1c and 1d with a tri(ethylene glycol) (TEG) monomethyl ether side chain instead of the 3,7‐dimethyloctyl side chain were synthesized. Polymerization of the methyl ester monomer 1c did not proceed well, affording only oligomer and unreacted 1c , whereas polymerization of the phenyl ester monomer 1d afforded well‐defined poly(naphthalenecarboxamide) together with small amounts of cyclic oligomers in [ 1d ]0/[ 2 ]0 = 10 and 29. The polymerization at high feed ratio ([ 1d ]0/[ 2 ]0 = 32.6) was accompanied with self‐condensation to give polyamide with a lower molecular weight than the calculated value. Such undesirable self‐condensation would result from insufficient deactivation of the electrophilic ester moiety by the electron‐donating resonance effect of the amide anion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Poly(vinyl alcohol)‐graft‐poly(1,4‐dioxan‐2‐one) (PVA‐g‐PPDO) with designed molecular structure was synthesized by a solid‐state polymerization. The solid‐state copolymerization was preceded by a graft copolymerization of PDO initiated with PVA as a multifunctional initiator, and Sn (Oct)2 as a coininitiator/catalyst in a homogeneous molten state. The polymerization temperature was then decreased and the copolymerization was carried out in a solid state. The products prepared by solid‐state polymerization were characterized by 1H NMR and DSC, and were compared with those synthesized in the homogeneous molten state. The degree of polymerization (Dp), degree of substitution (Ds), yield and the average molecular weight of the graft copolymer with different molecular structure were calculated from the 1H NMR spectra. The results show that the crystallization process during the solid‐state polymerization may suppress the undesirable inter‐ or intramolecular side reactions, then resulting in a controlled molecular structure of PVA‐g‐PPDO. The results of DSC measurement show that the molecular structures determine the thermal behavior of the PVA‐g‐PPDO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3083–3091, 2006  相似文献   

13.
Poly(o‐methoxyaniline) (POMA) and poly(o‐toluidine) (POT) salts doped with different acids (methanesulphonic acid (MeSA), trifluoroacetic acid (TFA), and hydrochloric acid (HCl)) were synthesized by using solid‐state polymerization method. The polymers were characterized by Fourier transform infrared (FTIR) spectra, ultraviolet–visible (UV–Vis) spectrometry, X‐ray diffraction (XRD), cyclic voltammetry (CV), and conductivity measurements. Transmission electron microscopy (TEM) was done to study the morphologies of POMA and POT salts. The FTIR and UV‐Vis absorption spectra revealed that the reduced phase was predominant in POMA salts, and the pernigraniline phase was predominant in POT salts. It was found that POMA salts displayed higher doping level and conductivity. In contrast, POT salts were lower at doping levels and conductivity. In accordance with these results, the electrochemical activity was also found to be lower in POT salts. The XRD patterns showed that the POMA salts displayed higher crystallinity than POT salts. The results from TEM revealed that the morphologies of POMA salts were different from those of POT salts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The bulk polycondensation of L ‐aspartic acid (ASP) with an acid catalyst under batch and continuous conditions was established as a preparative method for producing poly(succinimide) (PSI). Although sulfuric acid, p‐toluenesulfonic acid, and methanesulfonic acid were effective at producing PSI in a high conversion of ASP, o‐phosphoric acid was the most suitable catalyst for yielding PSI with a high weight‐average molecular weight (Mw) in a quantitative conversion; that is, the Mw value was 24,000. For the continuous process using a twin‐screw extruder at 3.0 kg · h−1 of the ASP feed rate, the conversion was greater than 99%, and the Mw value was 23,000 for the polycondensation with 10 wt % o‐phosphoric acid at 260°C. Sodium polyaspartate (PASP‐Na) originating from the acid‐catalyzed polycondensation exhibited high biodegradability and calcium‐ion‐chelating ability. The total organic carbon value was 86 ∼ 88%, and 100 g of PASP‐Na chelated with 5.5 ∼ 5.6 g of calcium ion, which was similar to the value for PASP‐Na from the acid‐catalyzed polycondensation with a mixed solvent © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 117–122, 2000  相似文献   

15.
Simultaneous solid‐state polycondensation (SSP) of the powdery prepolymers of poly(L ‐lactic acid) (PLLA) and poly(D ‐lactic acid) (PDLA) can produce entire stereocomplexed poly(lactic acid)s (sc‐PLA) with high molecular weight and can be an alternative synthetic route to sc‐PLA. Ordinary melt polycondensations of L ‐ and D ‐lactic acids gave the PLLA and PDLA prepolymers having medium molecular weight which were pulverized for blending in 1:1 ratio. The resultant powder blends were then subjected to SSP at 130–160 °C for 30 h under a reduced pressure of 0.5 Torr. Some of the products thus obtained attained a molecular weight (Mw) as high as 200 kDa, consisting of stereoblock copolymer of PLLA and PDLA. A small amount of the stereocomplex should be formed in the boundaries of the partially melted PLLA and PDLA where the hetero‐chain connection is induced to generate the blocky components. The resultant SSP products showed predominant stereocomplexation after their melt‐processing in the presence of the stereoblock components in spite of containing a small amount of racemic sequences in the homo‐chiral PLLA and PDLA chains. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3714–3722, 2008  相似文献   

16.
Melt‐crystallized, low molecular weight poly(L ‐lactic acid) (PLLA) consisting of α crystals was uniaxially drawn by solid‐state extrusion at an extrusion temperature (Text) of 130–170 °C. A series of extrusion‐drawn samples were prepared at an optimum Text value of 170 °C, slightly below the melting temperature (Tm) of α crystals (~180 °C). The drawn products were characterized by deformation flow profiles, differential scanning calorimetry (DSC) melting thermograms, wide‐angle X‐ray scattering (WAXD), and small‐angle X‐ray scattering as a function of the extrusion draw ratio (EDR). The deformation mode in the solid‐state extrusion of semicrystalline PLLA was more variable and complex than that in the extensional deformation expected in tensile drawing, which generally gave a mixture of α and β crystals. The deformation profile was extensional at a low EDR and transformed to a parabolic shear pattern at a higher EDR. At a given EDR, the central portion of an extrudate showed extensional deformation and the shear component became progressively more significant, moving from the center to the surface region. The WAXD intensities of the (0010)α and (003)β reflections on the meridian as well as the DSC melting thermograms showed that the crystal transformation from the initial α form to the oriented β form proceeded rapidly with increasing EDR at an EDR greater than 4. Furthermore, WAXD showed that the crystal transformation proceeded slightly more rapidly at the sheath region than at the core region. This fact, combined with the deformation profiles (shear at the sheath and extensional at the core), indicated that the crystal transformation was promoted by shear deformation under a high pressure rather than by extensional deformation. Thus, a highly oriented rod consisting of only β crystals was obtained by solid‐state extrusion of melt‐crystallized, low molecular weight PLLA slightly below Tm. The structure and properties of the α‐ and β‐form crystals were also studied. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 95–104, 2002  相似文献   

17.
A series of photoactive polyamides (PAs) containing acetoxynaphthalamide side chain with inherent viscosities of 0.27–0.56 dl g?1 were prepared by the direct polycondensation reaction of the 5‐(3‐acetoxynaphthoylamino)isophthalic acid with various commercially available diamines by means of triphenyl phosphite (TPP) and pyridine (Py) in the presence of calcium chloride and N‐methyl‐2‐pyrrolidone (NMP) under microwave irradiation and conventional heating conditions. Most of the resulting PAs are soluble in strong polar solvents such as N,N‐dimethylformamide (DMF), N,N‐dimethylacetamide, and NMP. Thermo‐gravimetric analysis (TGA) showed that polymers are thermally stable, 10% weight loss temperatures in excess of 320 and 378°C, and char yields at 600°C in nitrogen higher than 60%. These macromolecules exhibited maximum UV‐Vis absorption at 265 and 300 nm in a DMF solution. Their photoluminescence in the DMF solution demonstrated fluorescence emission maxima around 361 and 427 nm for all of the PAs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Well‐defined poly(m‐phenylene) (PMP), which is poly(1,3‐dibutoxy‐m‐phenylene), was successfully synthesized via Grignard metathesis polymerization. PMP with a reasonably high number‐average molecular weight (Mn) of 25,900 and a very low polydispersity index of 1.07 was obtained. The polymerization of a Grignard reagent monomer, 1‐bromo‐2,4‐dibutoxy‐5‐chloromagnesiobenzene, proceeded in a chain‐growth manner, probably due to the meta‐substituted design producing a short distance between the MgCl and Br groups and thereby making a smooth nickel species (? C? Ni? C? ) transfer to the intramolecular chain end (? C? Ni? Br) over a benzene ring. PMP showed a good solubility in the common organic solvents, such as tetrahydrofuran, CH2Cl2, and CHCl3. Furthermore, a new block copolymer comprised of PMP and poly(3‐hexylthiophene) was also prepared. The tapping mode atomic force microscopy image of the surface of the block copolymer thin film on a mica substrate showed a nanofibril morphology with a clear contrast. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

19.
1,4‐Dibromobenzenes carrying nonpolar hexoxy and polar oligo(ethylene glycol) side chains were subjected to Suzuki polycondensation with a benzene‐1,4‐bisboronic acid ester to produce high‐molar‐mass poly(para‐phenylene)s. The molar masses were determined with size exclusion chromatography with conventional polystyrene and universal calibration. These novel amphiphilically equipped rigid‐rod polymers have the potential to segregate lengthwise into polar and nonpolar domains, a property that has only rarely been described, and promise to exhibit novel interesting supramolecular properties. The oligo(ethylene gylcol) side chains terminate with a silyl‐protected alcohol group, and its deprotection on the polymer was proven to proceed quantitatively. This not only led to a further polarity increase but allows us to attach even more polar (e.g., charged) units in future projects. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2879–2889, 2003  相似文献   

20.
Organic/inorganic nanocomposites were synthesized from poly(methylmethacrylate) (PMMA) and properly modified silica nanoparticles by in situ polymerization. Methacryloylpropyltrimethoxysilane was selected as nanoparticle surface modifier because it is characterized by unsaturated end groups available to radical reactions, making possible to suppose their participation in the acrylic monomer polymerization. As a result of the above hypothesized reactions, a phase constituted by polyacrylic chains grafted onto modified silica surface was isolated. 29Si and 13C solid‐state nuclear magnetic resonance experiments permitted to analyze this phase in terms of composition and chain mobility as well as to highlight interaction mechanisms occurring between growing PMMA oligoradicals and functional groups onto silica surface. It was demonstrated that this PMMA grafted onto silica surface acts as an effective coupling agent and assures a good dispersion of nanoparticles as well as a strong nanoparticle/matrix interfacial adhesion. As a result of strong interactions occurring between phases, a significant increase of the glass transition temperature was recorded. Finally, the abrasion resistance of PMMA in the hybrids was significantly improved as a result of a different abrasion propagation mechanism induced by silica particles thus overcoming one of the most serious PMMA drawback. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号