首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The preparation and oxygen sensing properties of optical materials based on two trinuclear starburst ruthenium(II) complexes: [Ru3(bpy)6(TMMB)]6+ (1) and [Ru3(phen)6(TMMB)]6+ (2) (bpy=2,2′-bpyridine, phen=1,10-phenathroline, TMMB=1,3,5-tris[2-(2′-pyridyl)benzimidazoyl]methylbenzene) assembled in two mesoporous silicate (MS) are described in this paper. The luminescence of Ru complexes/silicate assemble materials can be quenched by molecular oxygen with good sensitivity (I0/I1>5 for 2/MS and I0/I1>3 for 1/MS), indicating that trinuclear starburst Ru(II) complexes/MS systems are sensitive to oxygen molecules.  相似文献   

2.
The new ligand 4-(isopropylbenzaldehyde)imidazo[4,5-f ][1,10]phenanthroline (ippip) and its complexes [Ru(phen)2(ippip)]2+(1),[Co(phen)2(ippip)]3+(2),[Ru(bpy)2(ippip)]2+(3),[Co(bpy)2(ippip)]3+(4)(bpy=2,2-bipyridine) and (phen=1,10-phenanthroline) were synthesized and characterized by ES+-MS, 1H and 13C NMR. The DNA binding properties of the four complexes were investigated by different spectrophotometric methods and viscosity measurements. The results suggest that complexes bind to calf thymus DNA (CT-DNA) through intercalation. When irradiated at 365 nm, the complexes promote the photocleavage of pBR322 DNA, and complex 1 cleaves DNA more effectively than 2, 3, 4 complexes under comparable experimental conditions. Furthermore, photocleavage studies reveal that singlet oxygen (1O2) plays a significant role in the photocleavage.  相似文献   

3.
The absorption, luminescence, and luminescence excitation spectra of ruthenium(II) complexes cis-[Ru(bpy)2(L)Cl]+[bpy=2,2′-bipyridyl; L=NH3, pyrazine, pyridine, 4-aminopyridine, 4-picoline, isonicotinamide, 4-cyanopyridine, 4,4′-bipyridyl, or trans-1,2-bis(4-pyridyl)ethylene] in alcoholic (4: 1 EtOH-MeOH) solutions are studied. At 77 K, the quantum yields and decay times of the luminescence of the complexes are measured and the deactivation rate constants of the lowest electronically excited metal-to-ligand charge transfer state (3MLCT) are determined. The linear correlation between the energy of the lowest state 3MLCT d π(Ru)>π*(bpy) of the cis-[Ru(bpy)2(L)Cl]+ complexes and the parameter pKa of the free 4-substituted pyridines and pyrazine used as ligands is established.  相似文献   

4.
Luminescence of the ruthenium(II) complexes cis-Ru(bpy)2(CN)2 (I), cis-[Ru(bpy)2(PPh3)CN](BF4) (II), and cis-Ru(bpy)(dppe)(CN)2 (III)[bpy=2.2′-bipyridyl, PPh3=triphenylphosphine, dppe=1,2-bis(diphenylphosphino)ethane], adsorbed on silicon oxide (Aerosil) were studied at a temperature of 77 K. The luminescence spectra, decay times, and quantum yields were measured, and the intermolecular rate constants of radiative transitions and nonradiative decay of the excited electronic state with the metal-to-ligand charge transfer (MLCT) were determined. It is found that the adsorption of the complex is accompanied by a decrease in the energy of the radiative MLCT state and by a considerable acceleration of its nonradiative decay. It is concluded that the interaction of the complexes with the surface adsorption centers occurs via formation of a strong hydrogen bond with a hydroxyl-hydrate cover, the interaction of complexes in the 3MLCT state being stronger than in the ground state. The additive (in the number of phosphorus atoms coordinated to the central ruthenium ion), a shift of the absorption and luminescence bands to shorter wavelengths in the sequence of complexes I–III, is retained when the complexes transform from solutions to the absorbed state.  相似文献   

5.
The luminescence spectra of cis-[Ru(bpy)2(L)Cl]+ (bpy is 2,2′-bipyridyl; L is pyrazine, pyridine, 4-amino-pyridine, 4-picolin, isonicotinamide, 4-cyanopyridine, or 4,4′bipyridyl) complexes are studied in alcoholic (4: 1 EtOH-MeOH) solutions at 77 K. A linear correlation is found between the energy of the lowest electronically excited metal-to-ligand charge transfer (3MLCT) state d π(Ru) → π* (bpy) and the parameter pK a of the free 4-substituted pyridines and pyrazine used as ligands L. The [B3LYP/6-31G + LanL2DZ(Ru)] hybrid method of the density functional theory is used to optimize the geometry of complexes and calculate their electronic structure and the charge distribution on the atoms of the nearest environment of the ruthenium ion. It is shown that there exists a linear unambiguous correlation between the negative charge on the nitrogen atom (qN L) of ligands L coordinated in the complex and the parameters pK a of free ligands. The calculated energies of 3MLCT excited states almost linearly (correlation coefficient 0.958) depend on the charge qN L, which completely agrees with experimental data.  相似文献   

6.
The absorption spectra at room temperature and the spectra, the quantum yields, and the decay times of the luminescence at 77 K of binuclear complexes [X(bpy)2Ru(BL)Ru(bpy)2Cl]2+ (bpy = 2,2′-bipyridyl; X = Cl, BL = pyrazine, 4,4′-bipyridyl, trans-1,2-bis(4-pyridyl)ethylene, and trans-1,2-bis(4-pyridyl)ethane and X = NO2, BL = 4,4′-bipyridyl) in alcoholic (4: 1 EtOH-MeOH) solutions are studied. It is shown that the interaction between the metal centers (MCs) of the complexes affects the characteristics of the electronically excited states (EESs) of each of them and facilitates increasing the transition dipole moment Ru(dπ)→BL(π*). The deactivation rate constants of the lowest electronically excited metal-to-ligand charge transfer (3MLCT) state of the complexes are determined. In an asymmetric binuclear complex, the energy transfer from MC(NO2) to MC(Cl) is revealed, with the rate constant of this transfer being not smaller than 3.2 × 1010 s?1.  相似文献   

7.
The photoluminescence properties of three Tb(III) complexes of the form [Tb2(fod)6(μ-bpm)], [Tb(fod)3(phen)] and [Tb(fod)3(bpy)] and optical absorption properties of their Ho(III) analogues (fod=anion of 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione, bpm=2,2′-bipyrimidine, phen=1,10-phenanthroline and bpy=2,2′-bipyridyl) in a series of solvents are presented. The luminescence of the complexes is sensitive to changes in environment (ligand/solvent) around Tb(III) and co-sensitization of the ancillary ligands. The enhancement of the luminescence intensity in coordinating solvents is attributed to the transformation of eight-coordination into less symmetric nine-coordination structure around Tb(III). Among phen and bpy, the phen is better co-sensitizer while bpm has been observed as poor co-sensitizer. The enhancement of the oscillator strength of 5G65I8 hypersensitive transition in the 4f-4f absorption in some coordinating solvents is attributed to decrease in the symmetry of the field around Ho(III) ion. The [Ho(fod)3(phen)] is inert towards the solvents and retains its bulk structure and composition in solution. The transformation of the holmium complexes in DMSO into [Ho(fod)3(DMSO)2] species is found. The results reveal that the luminescence and 4f-4f absorption properties of lanthanide complexes in solution can be modulated by tuning the coordination structure through ancillary ligands and donor solvents.  相似文献   

8.
Three Ruthenium(II) polypyridine complexes, [Ru(phen)2(mipc)]2+(1), [Ru(bpy)2(mipc)]2+ (2) and [Ru(dmb)2(mipc)]2+(3) [mipc?=?2-(6-methyl-3-(1H-imidazo[4, 5-f][1,10]-phenanthroline-2-yl)-4H-chromene-4-one, phen?=?1,10-phenanthroline,bpy?=?2, 2′bipyridine,dmb?=?4, 4′-dimethyl-2, 2′-bipyridine] have been synthesized and characterized by elemental analysis, IR, UV–Vis, 1H& 13C NMR and mass spectra. The DNA-binding properties of the Ruthenium(II) complexes were investigated by spectrophotometric methods, viscosity measurements and light switch studies. These three complexes have been focused on photo activated cleavage studies with pBR-322 and antimicrobial studies. Experimental results indicate that the three complexes intercalate into DNA base pairs and follows the order of 1?>?2?>?3 respectively. Molecular docking studies also support the DNA interactions with complexes through hydrogen bonding and vander Waal’s interactions. Cytotoxicity studies with Hela cell lines has been revealing about anti tumor activity of these complexes.  相似文献   

9.
Tris(2,2′‐bipyridine)ruthenium(II) complex‐based carbonic anhydrase (CA) inhibitors, [Ru(bpy)2(bpydbs)]2+ {bpy = 2,2′‐bipyridine and bpydbs = 2,2′‐bipyridinyl‐4,4′‐dicarboxilic acid bis[(2‐{2‐[2‐(4‐sulfamoylbenzoylamino)ethoxy]ethoxy}ethyl)amide]} and [Ru(bpydbs)3]2+, tethering plural benzenesulfonamide groups have been prepared. The CA catalytic activity was effectively suppressed by these synthetic [Ru(bpy)2(bpydbs)]2+ and [Ru(bpydbs)3]2+ inhibitors, and their dissociation constants at pH = 7.2 and at 25°C were determined to be KI = 0.93 ± 0.02 μM and KI = 0.24 ± 0.03 μM, respectively. Next, 2 photoinduced electron‐transfer (ET) systems comprising a Ru2+‐CA complex and an electron acceptor, such as chloropentaamminecobalt(III) ([CoCl(NH3)5]2+) or methylviologen (MV2+) were studied. In the presence of CA and a sacrificial electron acceptor, such as pentaamminechlorocobalt(III) complex, the photoexcited triplet state of 3([Ru(II)]2+)* was quenched through an intermolecular photoinduced ET mechanism. In case of the [Ru(bpydbs)3]2+‐CA‐MV2+ system, the photoexcited triplet state of 3([Ru(bpydbs)3]2+)* was quenched by sacrificial quencher through an intermolecular photoinduced ET mechanism, giving the oxidized [Ru(bpydbs)3]3+. Then the following intramolecular ET from the amino acid residue, Tyr6, near the active site of CA proceeded. We observed a transient absorption around at 410 nm, arising from the formation of a Tyr?+ in the [Ru(bpydbs)3]2+‐CA‐MV2+ system. These artificial Ru(II)‐CA systems may clearly demonstrate both intermolecular and intramolecular photoinduced ET reactions of protein and could be one of the interesting models of the ET proteins. Their photophysical properties and the detailed ET mechanisms are discussed in order to clarify the multistep ET reactions.  相似文献   

10.
The luminescence, absorption, and luminescence excitation spectra of complexes cis-[Ru(bpy)2(L)(NO2)]+ [bpy = 2,2′-bipyridyl, L = pyridine, 4-aminopyridine, 4-dimethylaminopyridine, 4-picoline, isonicotinamide, or 4,4′-bipyridyl] in alcoholic (4 : 1 EtOH–MeOH) solutions are studied at 77 K. A linear correlation is established between the energy of the lowest electronically excited metal-toligand charge transfer state dπ(Ru) → π*(bpy) of the complexes and the pKa parameter of the free 4-substituted pyridines used as ligands L. The B3LYP/[6-31G(d)+LanL2DZ(Ru)] hybrid density functional method is used to optimize the geometry of complexes and calculate their electronic structure and the charge distribution on the atoms of the nearest environment of ruthenium(II) ions. It is shown that there exists a mutually unambiguous correspondence between the charge on the nitrogen atom of ligands L coordinated in the complex and the pKa parameter of ligands. The calculated energies of the electronically excited metal-to-ligand charge transfer states of complexes linearly (correlation coefficient 0.99) depend on the charge on the nitrogen atom of ligands L, which completely agrees with the experimental data.  相似文献   

11.
Two novel, mixed ligand complexes of cobalt(III) and nickel(II), [Co(phen)2(taptp)]3+ (1) and [Ni(phen)2(taptp)]2+ (2) (phen = 1,10-phenanthroline and taptp = 4,5,9,18-tetraazaphenanthreno [9,10-b]triphenylene), were synthesized and characterized by elemental analyses, UV-visible and NMR spectroscopies. The binding interactions of the two complexes with DNA have been investigated using absorption and emission spectroscopy methods and electrophoresis measurement mode. The intrinsic binding constants for these complexes to DNA are in the order of 105. In Tris buffer, the Co(III) complex shows a moderate luminescence which was enhanced after binding to DNA. However for complex Ni(II), no emission was observed in Tris buffer. The [Co(phen)2(taptp)]3+ and [Ni(phen)2(taptp)]2+ can cause the photocleavage of DNA supercoiled pBR322 upon irradiation by 360 nm light. Based on the data, an intercalative mode of DNA binding is suggested for the two complexes.  相似文献   

12.
Mixed-ligand Cu(II) and Ni(II) complexes, [Cu(dmit)(bpy)]2 (I), [Ni(dmit)(phen)2] (II) and [Ni(dmit)(phen)2]·CH2Cl2 (III) (dmit=1.3-dithiole-2-thione-4.5-dithiolate, phen=1.10-phenantroline, bpy=2.2′-bipyridine) have been prepared by ligand exchange between phen or bpy and (Bu4N)2[M(dmit)2] (M=Ni, Cu) and characterized by elemental analysis, IR spectroscopy, single-crystal X-ray analysis and by investigation of magnetic and resonance properties. In complex I, the monomeric units form dimers in a head-to-tail arrangement by weak coordination bonds between copper and dithiolate sulfur atoms and π–π interactions between dmit and bpy from neighboring monomers. Dimers in I are further extended into chains by weak Cu–S(thione) contacts. In crystal packing of complex II and III, there exists a weak π–π interaction between two parallel phen molecules of the adjacent complexes. As a consequence, the magnetic and resonance characteristics of copper complex may be described in approximation of exchange-coupled pairs of Cu2+ ions with ion spin S=1/2. The nickel complexes are described by isotropic exchange model for single-site spin S=1.  相似文献   

13.
We present the elegant synthesis and the photophysical and electroluminescent properties of a series of cyclometalated iridium(III) complexes [Ir(PPI)2(pic), PPI: 1,2‐diphenyl‐1H‐phenanthro[9,10‐d]imidazole; pic: picolinic acid]. The Ir(PPI)2(pic) complexes showed characteristic phosphorescence with an emission range of 556–579 nm and a high quantum efficiency with microsecond lifetimes. The strongly allowed phosphorescence in these complexes is the result of significant spin–orbit coupling of the Ir center. All bis(PPI) derivatives exhibit intense triplet metal‐to‐ligand charge transfer (MLCT) photoluminescence in the fluid solutions at room temperature. The impact of different solvents, substituents on the phenanthroimidazole ligands and complex concentrations upon their emissive behavior have been examined and demonstrate that their emission energies can be systematically modified. Weak bands located at longer wavelength have been assigned to the 1MLCT ← S0 and 3MLCT ← S0 transitions of iridium complexes. Application of the 3MLCT excited state of the [Ir(PPI)2(pic)] materials in organic light‐emitting devices are described. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The three Ru(II) complexes of [Ru(phen)2dppca]2+ (1) [Ru(bpy)2dppca]2+ (2) and [Ru(dmb)2dppca]2+ (3) (where phen = 1,10 phenanthroline, bpy = 2,2-bipyridine, dmb = 2 ,2-dimethyl 2′,2′-bipyridine and polypyridyl ligand containing a single carboxylate functionality dppca ligand (dipyridophenazine-11-carboxylic acid) have been synthesized and characterized. These complexes have been shown to act as promising calf thymus DNA intercalators and a new class of DNA light switches, as evidenced by UV-visible and luminescence titrations with Co2+ and EDTA, steady-state emission quenching by [Fe(CN)6]4− and KI, DNA competitive binding with ethidium bromide, viscosity measurements, and DNA melting experiments. The results suggest that 1, 2, and 3 complexes bind to CT-DNA through intercalation and follows the order 1 > 2 > 3. Under irradiation at 365 nm, the three complexes have also been found to promote the photocleavage of plasmid pBR322 DNA.  相似文献   

15.
The [M(N_N)(Hdphpm)]ClO4 and [(M(N_N))2(μ-dphpm)](ClO4)2 complexes (M = Pd(II), Pt(II); (N_N) is ethylenediamine (En) and orthophenanthroline (Phen); Hdphpm? and dphpm2? are the mono- and bisdeprotonated forms of 4,6-diphenylpyrimidine) are obtained and characterized by 1H NMR spectroscopy and electronic absorption and emission spectroscopy. The magnetic nonequivalence of protons of (N_N) ligands is explained by a difference in the trans-effect of the carbanion and pyrimidine parts of the cyclometalated ligand. The long-wavelength absorption bands and the vibrationally structured luminescence bands of ethylenediamine complexes are attributed to optical transitions in the {M(Hdphpm)} and {M2(μ-dphpm)} metal-complex fragments. The complexes with orthophenanthroline exhibit two low-energy optical transitions involving π* orbitals localized on the cyclometalated and chelating ligands; the difference in their energies depends on the metal and is much larger for Pt(II) than for Pd(II). It is found that the replacement of Pd(II) by Pt(II) in the [(M(phen))2(μ-dphpm)]2+ complexes changes the direction of the photoexcitation energy degradation due to the energy transfer between the {M2(μ-dphpm)} bridging fragment and peripheral phenanthroline ligands.  相似文献   

16.
Three ruthenium(II) polypyridyl complexes, [Ru(phen)2(mip)](ClO4)2 (1) (phen =1,10-Phenanthroline), [Ru(bpy)2(mip)](ClO4)2 (2) (bpy = 2,2’bipyridyl) and [Ru(dmb)2(mip)](ClO4)2 (3) (dmb = 4, 4′-dimethyl 2, 2′-bipyridine), were synthesized with an intercalative ligand mip (2-morpholino-1H-imidazo[4,5-f][1, 10]phenanthroline) and characterized by 1H, 13C–NMR, IR, UV-vis, mass spectra and elemental analysis. pH effect, ion selectivity (cations, anions) and solvent sensitivity of complexes were studied. The interaction of these complexes with DNA was performed using absorption, emission spectroscopy and viscosity measurements. The experimental results indicated that the two complexes interacted with calf thymus DNA (CT-DNA) by intercalative mode. BSA (Bovine Serum Albumin) protein binding of these complexes was studied by UV-visible and fluorescence techniques. The binding capacity of these complexes was explained theoretically by molecular docking method.  相似文献   

17.
We studied the spectral-luminescent characteristics of the luminescence of mixed-ligand polypyridine-phosphine complexes of ruthenium(II) cis-[Ru(bpy)2(PPh3)X](BF4) n with ligands 2,2′-bipyridyl (bpy) and triphenylphosphine (PPh3) and X = Cl, Br, CN, NO2, NH3, MeCN, pyridine (py), 4-aminopyridine (pyNH2), and 4,4′-bipyridyl (4,4′-bpy) in a 4: 1 EtOH-MeOH alcoholic mixture at 77 K. The radiative and nonradiative deactivation rate constants of the lowest electronically excited state of the complexes are determined. We find that triphenylphosphine has a greater effect on the photophysical characteristics of ruthenium(II) complexes compared to π-acceptor strong-field ligands, such as MeCN, CN, and NO2. At the same time, the characteristics of complexes cis-[Ru(bpy)2(PPh3)X] n+ considerably depend on the nature of the second monodentate ligand X, which is coordinated to ruthenium(II), and correlate with its position in the spectrochemical series of ligands.  相似文献   

18.
The results of our investigation on the sensitized luminescence properties of three Eu(III) ??-diketonate complexes of the form [Eu2(fod)6(??-bpm)], [Eu(fod)3(phen)] and [Eu(fod)3(bpy)] and 4f?C4f absorption properties of their Er(III) analogues ( fod = anion of 6,6,7,7,8,8,8- heptafluoro-2,2-dimethyl-3,5-octanedione, bpm = 2,2??-bipyrimidine, phen = 1,10-phenanthroline and bpy = 2,2??-bipyridyl) in a series of non-aqueous solvents are presented. The Eu(III) complexes are highly luminescent and their luminescence properties (intensity and band shape) are sensitive to the changes in the inner coordination sphere of the Eu(III) ion. The luminescence intensity of the mononuclear complexes in pyridine is drastically decreased. The coordination structure of the complexes in pyridine is transformed into a more symmetrical one which results into a slow radiative rate of the emission from the complexes. The ancillary ligands, phen and bpy are found better co-sensitizers as compared to the bpm to sensitize Eu(III)-luminescence. The 4f?C4f absorption properties (oscillator strength and band shape) of the Er(III) complexes demonstrate that 4G11/2 ?? 4I11/2 and 2H11/2 ?? 4I15/2 hypersensitive transitions of Er(III) are very sensitive in some coordinating solvents which reflects complex?Csolvent interaction in solution. The hypersensitive transitions of [Er(fod)3(phen)] remain unaffected in any of the solvents and this complex retains its bulk composition in solution. The erbium complexes as well as the Er(fod)3 chelate are invaded by DMSO. This solvent enters the inner coordination sphere by replacing heterocyclic ligand and the complexes acquire similar structure [Er(fod)3(DMSO)2] in this solvent. The results reveal that the luminescence and absorption properties of lanthanide complexes in solution can be controlled by tuning the coordination structure through ancillary ligands and donor solvents. This work shall prove useful in designing new biological applications with such probes.  相似文献   

19.
Comparative quantum chemical calculations on the reaction pathways for the formation of ruthena(IV)cyclobutanes from both 1st‐ and 2nd‐generation Grubbs catalysts of the general formula RuX2(L)(L′)(?CH2) (L = PCy3 or 1,3‐dimesityl‐4,5‐dihydroimidazolin‐2‐ylidene, L′ = PCy3) and norborn‐2‐ene (NBE) were carried out on the B3LYP/LACVP** level in dependence on the ligand X = I, Br, Cl, and F. The mechanism proposed by Straub for the formation of (one) active and (three) inactive NBE–Ru–carbene complexes for non‐cyclic alkenes was applied to the cyclic alkene NBE. In RuX2(PCy3)2(?CH2), the inactive NBE–Ru–carbene complex is energetically more stable than the active one; however, in RuX2(IMesH2)(PCy3)(?CH2), the active NBE–Ru–carbene complex is more stable than the inactive one. In due consequence, the possible rate limiting barrier for the conversion of the NBE–Ru–carbene complex into the corresponding metallocyclobutane (MCB) is systematically larger in the case of 1st‐generation Grubbs catalysts than of 2nd‐generation Grubbs catalysts due to an additional re‐arrangement for the formation of an active π‐complex from the more stable (inactive) conformer. This correlates with the observed reactivity of both types of initiators. There is a strong influence of the ligands L and X on the conformational properties and relative stabilities of the 14‐electron intermediates, which has a direct effect on the distribution of the inactive and active conformations of the corresponding Ru–carbene–NBE complexes. A direct correlation between the conformational properties of the 14‐electron intermediates and the relative stabilities of the active Ru–carbene–NBE complexes was observed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The reaction of phenols with the excited state, *[Ru(bpy)3]2+ (E0 = 0.76 V) and *[Ru(H2dcbpy)3]2+, (dcbpy = 4,4′‐dicarboxy‐2,2′‐bipyridine) (E0 = 1.55 V vs. SCE) complexes in CH3CN has been studied by luminescence quenching technique and the quenching is dynamic. The formation of phenoxyl radical as a transient is confirmed by its characteristic absorption at 400 nm. The kq value is highly sensitive to the change of pH of the medium and ΔG0 of the reaction. Based on the treatment of kq data in terms of energetics of the reaction and pH of the medium, proton coupled electron transfer (PCET) mechanism has been proposed for the reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号