共查询到20条相似文献,搜索用时 15 毫秒
1.
Photophysical Processes in ‘Supramolecular Balls’ Formed by Lanthanide Chloride with 2,2′‐Bipyridine
Lada N. Puntus 《Helvetica chimica acta》2009,92(11):2552-2564
The europium complex [EuCl2(bpy)2(H2O)2]Cl?1.25 C2H6O?0.37 H2O, where bpy is 2,2′‐bipyridine, was synthesized and investigated with the aim to relate its molecular geometry and crystal packing to the efficiency of energy‐transfer processes. The presence of H‐bonds between noncoordinated Cl? ions and coordinated H2O molecules leads to the formation of discrete trimers assembled by a number of C? H???Cl and stacking interactions into ‘supramolecular balls’ which contain Cl? ions and solvate molecules (H2O and EtOH). The additional stabilization of the complex is due to intramolecular N???C interactions between two bpy ligands that causes some shortening of the Eu? N bonds. Deciphering the luminescence properties of the Eu complex was performed under consideration of both the composition of the inner coordination sphere and the peculiarities of the crystal packing. The influence of the latter and the bpy orientation on the energy of the ligand→Eu charge‐transfer state (LMCT) was established, and an additional excited state induced by the π‐stacking interaction (SICT) was identified. 相似文献
2.
Syntheses,Structures and Characterization of Four Metal‐Organic Frameworks constructed by 2,2′,6,6′‐Tetramethoxy‐4,4′‐biphenyldicarboxylic Acid 下载免费PDF全文
Four metal‐organic frameworks (MOFs), {[Mn3.5L(OH)(HCOO)4(DMF)] · H2O} ( 1 ), {[In2.5L2O(OH)1.5(H2O)2] · DMF · CH3CN · 2H2O} ( 2 ), {[Pb4L3O(DMA)] · CH3CN} ( 3 ), and {[LaL(NO3)(DMF)2] · 2H2O} ( 4 ) were synthesized by utilizing the ligand 2,2′,6,6′‐tetramethoxy‐4,4′‐biphenyldicarboxylic acid (H2L) via solvothermal methods. All MOFs were characterized by single‐crystal X‐ray diffraction, powder X‐ray diffraction, thermogravimetric analysis, and infrared spectroscopy. In 1 , the Mn2+ ions are interconnected by formic groups in situ produced via DMF decomposition to form a rare 2D macrocyclic plane, which is further linked by L2– to construct the final 3D network. In 2 , 1D zip‐like infinite chain is formed and then interconnected to build the 3D framework. In 3 , a [Pb6(μ4‐O)2(O2C)10(DMA)2] cluster with a centrosymmetric [Pb6(μ4‐O)2]8+ octahedral core is formed in the 3D structure. In 4 , the La3+ ions are connected with each other through carboxylate groups of L2– to generate 1D zigzag chain, which is further linked by L2– to construct a 3D network with sra topology. Solid photoluminescence properties of 3 and 4 were also investigated. 相似文献
3.
Prof. Dr. Ji‐Jiang Wang Jun‐Fang Lv Pei‐Xiang Cao Prof. Dr. Mei‐Li Zhang Lou‐Jun Gao Lei Lv Yi‐Xia Ren Xiang‐Yang Hou 《无机化学与普通化学杂志》2011,637(11):1585-1589
Two new coordination polymers, {[Cd2(btc)(2,2′‐bpy)2] · H2O}n ( 1 ) and [Zn2(btc)(2,2′‐bpy)(H2O)]n ( 2 ) (H4btc = biphenyl‐2,2′,4,4′‐tetracarboxylic acid, 2,2′‐bpy = 2,2′‐bipyridine), were synthesized hydrothermally under similar conditions and characterized by elemental analysis, IR spectra, TGA, and single‐crystal X‐ray diffraction analysis. In complexes 1 and 2 , the (btc)4– ligand acts as connectors to link metal ions to give a 2D bilayer network of 1 and a 3D metal‐organic framework of 2 , respectively. The differences in the structures are induced by diverging coordination modes of the (btc)4– ligand, which can be attributed to the difference metal ions in sizes. The results indicate that metal ions have significant effects on the formation and structures of the final complexes. Additionally, the fluorescent properties of the two complexes were also studied in the solid state at room temperature. 相似文献
4.
Three novel supramolecular arrays of zigzag polyaromatic salts are reported. Both the conformation and disposition of the dications are subjected to various noncovalent interactions. Thus, the presence or absence of the π‐π interacting enclathrated molecules, the efficient packing and the involved hydrogen bonding interactions of anions, as well as the increased hydrophobic property of the dications themselves exert influence. 相似文献
5.
The new synthesized ligand (DADMBTZ = 2,2′‐diamino‐5,5′‐dimethyl‐4,4′‐bithiazole), which is mentioned in this text, is used for preparing the two new complexes [Zn(DADMBTZ)3](ClO4)2. 0.8MeOH.0.2H2O ( 1 ) and [Cd(DADMBTZ)3](ClO4)2 ( 2 ). The characterization was done by IR, 1H, 13C NMR spectroscopy, elemental analysis and single crystal X‐ray determination. In reaction with DADMBTZ, zinc(II) and cadmium(II) show different characterization. In 2 , to form a tris‐chelate complex with nearly C3 symmetry for coordination polyhedron, DADMBTZ acts as a bidentate ligand. In 1 , this difference maybe relevant to small radii of Zn2+ which make one of the DADMBTZ ligands act as a monodentate ligand to form the five coordinated Zn2+ complex. In both 1 and 2 complexes the anions are symmetrically different. 1 and 2 complexes form 2‐D and 3‐D networks via N‐H···O and N‐H···N hydrogen bonds, respectively. 相似文献
6.
Ji‐Jiang Wang Tian‐Tian Wang Long Tang Xiang‐Yang Hou Mei‐Li Zhang Lou‐Jun Gao Feng Fu Yi‐Xia Ren 《无机化学与普通化学杂志》2014,640(2):483-486
Two coordination polymers, {[Zn2(L)(bpy)] · 2H2O}n ( 1 ) and [Zn2(L)(bpe)]n ( 2 ) [H4L = terphenyl‐2,2′,4,4′‐tetracarboxylic acid, bpy = 4,4′‐bipyridine, and bpe = 1,2‐bis(4‐pyridyl)ethane], were hydrothermally synthesized under similar conditions and characterized by elemental analysis, IR spectroscopy, TGA, and single‐crystal X‐ray diffraction analysis. Compound 1 has a 3D framework containing Zn–O–C–O–Zn 1D chains. Compound 2 exhibits a 3D framework, which features tubular channels. The channels are occupied by bpe molecules. The differences in the structures demonstrate that the auxiliary dipyridyl‐containing ligand has a significant effect on the construction of the final framework. Additionally, the fluorescent properties of the two compounds were also studied in the solid state at room temperature. 相似文献
7.
Two metal‐organic coordination polymers with one‐dimensional infinite chain motif, [Cd(bqdc)(phen)2]n ( 1 ) and [Co(bqdc)(phen)(H2O)2]n ( 2 ) (H2bqdc = 2,2′‐biquinoline‐4,4′‐dicarboxylic acid, phen = 1,10‐phenanthroline), have been synthesized under similar solv/hydrothermal conditions and fully structural characterized by elemental analysis, IR, and single‐crystal X‐ray crystallography. Their thermal stability and photoluminescence properties were further investigated by TG‐DTA and fluorescence spectra. In both complexes, the adjacent metal ions (CdII for 1 and CoII for 2 ) are linked together by dicarboxylate groups of bqdc dianions in chelating bidentate and monodentate modes, respectively, generating a zigzag chain for 1 and linear chain for 2 . The relatively higher thermal stability up to 324 °C for 1 and strong fluorescence emissions jointly suggest that they are good candidates for luminescent materials. 相似文献
8.
Two transition metal‐organic coordination polymers, [Mn2(1,3‐bdc)2(Me2bpy)2] · Me2bpy ( 1 ) and [Co(4,4′‐oba)(Me2bpy)] ( 2 ) were hydrothermally synthesized and structurally characterized by elemental analysis, IR spectroscopy, TG, and single‐crystal X‐ray diffraction [1,3‐H2bdc = benzene‐1,3‐dicarboxylic acid, H2oba = 4,4′‐oxybis(benzoic acid) Me2bpy = 4,4′‐dimethyl‐2,2′‐bipyridine]. Compound 1 crystallizes in the orthorhombic system, space group P212121, with a = 23.371(5), b = 14.419(3), and c = 14.251(3) Å. Compound 2 crystallizes in the monoclinic system, space group P21/c, with a = 7.4863(15), b = 18.272(4), c = 16.953(5) Å, and β = 107.44(3)°. The crystal structure of complex 1 is a wave‐like layer with central Mn2+ atoms bridged by 1,3‐bdc ligands, whereas the structure of compound 2 presents a ladder chain of hexacoordinate Co2+ atoms, in which the metal atoms are bridged by 4,4′‐oba ligands and decorated by Me2bpy ligands. The two compounds are further extended into 3D supramolecular structures through π–π stacking interactions. Additionally, the compounds show intense fluorescence in solid state at room temperature. 相似文献
9.
Double D–π–A Dye Linked by 2,2′‐Bipyridine Dicarboxylic Acid: Influence of para‐ and meta‐Substituted Carboxyl Anchoring Group 下载免费PDF全文
Dr. Paramaguru Ganesan Dr. Aravind Kumar Chandiran Dr. Peng Gao Prof. Renganathan Rajalingam Prof. Dr. Michael Grätzel Prof. Mohammad Khaja Nazeeruddin 《Chemphyschem》2015,16(5):1035-1041
Starting from 2,2′‐bipyridine dicarboxylic acid, two new (D –π–A)2 sensitizers, including m‐DA with the carboxyl anchoring group substituted meta to the donor‐bridge moiety and p‐DA with a para‐substituted anchoring group, were synthesized in order to evaluate the impact of the position of the anchoring group on the optical, electrochemical, and photovoltaic properties of dye‐sensitized solar cells. p‐DA exhibits red‐shifted absorption behavior compared to m‐DA, owing to the more efficiently extended π‐conjugation with para substitution. Both m‐DA and p‐DA are adsorbed on the mesoporous TiO2 surface by using both of their carboxylic acid groups in a bianchoring mode, which is confirmed through attenuated total reflectance FTIR analysis. Red‐shifted absorption of p‐DA assists the achievement of a red‐shifted incident photon‐to‐electron conversion efficiency and a higher short‐circuit current density than m‐DA. The photogenerated electron lifetime in TiO2 is also found to be higher for para substituted p‐DA than the meta‐substituted m‐DA, which results in a higher open‐circuit voltage. All of the results suggest that dicarboxyl‐2,2′‐bipyridine can be used as an acceptor for metal‐free organic sensitizers. However, the anchoring segments should be adjusted to the favorable position of the corresponding donor‐bridge moieties for better conjugation. 相似文献
10.
Maria G. Babashkina Elmira R. Shakirova Dr. Damir A. Safin Felix D. Sokolov Axel Klein Łukasz Szyrwiel Maria Kubiak Henryk Kozlowski Dmitriy B. Krivolapov 《无机化学与普通化学杂志》2010,636(15):2626-2632
Reaction of O,O′‐diisopropylthiophosphoric acid isothiocyanate (iPrO)2P(S)NCS with 1,10‐diaza‐18‐crown‐6, 1,7‐diaza‐18‐crown‐6, or 1,7‐diaza‐15‐crown‐5 leads to the N‐thiophosphorylated bis‐thioureas N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,10‐diaza‐18‐crown‐6 ( H2LI ), N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,7‐diaza‐18‐crown‐6 ( H2LII ) and N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,7‐diaza‐15‐crown‐5 ( H2LIII ). Reaction of the potassium salts of H2LI–III with a mixture of CuI and 2,2′‐bipyridine ( bpy ) or 1,10‐phenanthroline ( phen ) in aqueous EtOH/CH2Cl2 leads to the dinuclear complexes [Cu2(bpy)2LI–III] and [Cu2(phen)2LI–III] . The structures of these compounds were investigated by 1H, 31P{1H} NMR spectroscopy, and elemental analysis. The crystal structures of H2LI and [Cu2(phen)2LI] were determined by single‐crystal X‐ray diffraction. Extraction capacities of the obtained compounds in comparison to the related compounds 1,10‐diaza‐18‐crown‐6, N,N′‐bis[C(=CMe2)CH2P(O)(OiPr)2]‐1,10‐diaza‐18‐crown‐6, N,N′‐bis[C(S)NHP(O)(OiPr)2]‐1,10‐diaza‐18‐crown‐6 towards the picrate salts LiPic, NaPic, KPic. and NH4Pic were also studied. 相似文献
11.
2,2′-Bipyridyl and some substituted compounds catalyze effectively the oxidation of isopropyl alcohol by chromic acid. The reaction is first order in chromium(VI), alcohol and 2,2′-bipyridyl; it is first order in hydrogen ions at high acidity and slightly alters to second order at low acidity. The proposed mechanism shows that the rate-limiting step is mainly the decomposition of a termolecular complex to products. However, at low acidity, the formation step of this complex is a little less reversible and hence somewhat rate-limiting. Electron-donating substituents at the 4-position enhance the catalytic activity. Electron-withdrawing substituents at the 4- and 2-positions diminish the reaction rates by electronic and steric factors. 相似文献
12.
The syntheses, characterizations and in vitro cytotoxities of seven soluble silver (I) compounds (1–7) with 2,2′‐bipyridine (bpy), 5,5′‐dimethyl‐2,2′‐bipyridine (dmbpy) and 1, 10‐phenanthroline (phen) are described. Two of the complexes, [Ag(dmbpy)(NO3)] (1) and [Ag(dmbpy)]ClO4(2), have been structurally established by single‐crystal X‐ray diffraction, which reveals the silver(I) atom in compound 1 is in a Y‐shape coordination geometry with two N atoms (av. Ag? N = 227.8 pm) from a chelate dmbpy ligand and an O atom (Ag? O=221.8(4) pm) from a monodentate nitrate. The Ag(I) atom in compound 2 is three‐coordinated by three N atoms, two of which are from a chelate dmbpy, and one from an acetonitrile ligand. The seven compounds showed strong cytotoxities in vitro to both normal and carcinoma cells. 相似文献
13.
André Grüßing Sven Rau Sebastian Schebesta Alexander Scholz Helmar Görls Dirk Walther Prof. Dr. 《无机化学与普通化学杂志》2007,633(7):961-970
Syntheses and Structures of Bis(4,4′‐t‐butyl‐2,2′‐bipyridine) Ruthenium(II) Complexes with functional Derivatives of Tetramethyl‐bibenzimidazole [(tbbpy)2RuCl2] reacts with dinitro‐tetramethylbibenzimidazole ( A ) in DMF to form the complex [(tbbpy)2Ru( A )](PF6)2 ( 1a ) (tbbpy: bis(4,4′‐t‐butyl)‐2,2′bipyridine). Exchange of the two PF6? anions by a mixture of tetrafluor‐terephthalat/tetrafluor‐terephthalic acid results in the formation of 1b in which an extended hydrogen‐bonded network is formed. According to the 1H NMR spectra and X‐ray analyses of both 1a and 1b , the two nitro groups of the bibenzimidazole ligand are situated at the periphery of the complex in cis position to each other. Reduction of the nitro groups in 1a with SnCl2/HCl results in the corresponding diamino complex 2 which is a useful starting product for further functionalization reactions. Substitution of the two amino groups in 2 by bromide or iodide via Sandmeyer reaction results in the crystalline complexes [(tbbpy)2Ru( C )](PF6)2 and [(tbbpy)2Ru( D )](PF6)2 ( C : dibromo‐tetrabibenzimidazole, D : diiodo‐tetrabibenzimidazole). Furthermore, 2 readily reacts with 4‐t‐butyl‐salicylaldehyde or pyridine‐2‐carbaldehyde under formation of the corresponding Schiff base RuII complexes 5 and 6 . 1H NMR spectra show that the substituents (NH2, Br, I, azomethines) in 2 ‐ 6 are also situated in peripheral positions, cis to each other. The solid state structure of both 2 , and 3 , determined by X‐ray analyses confirm this structure. In addition, the X‐ray diffraction analyses of single crystals of the complexes [(tri‐t‐butyl‐terpy)(Cl)Ru( A )] ( 7 ) and [( A )PtCl2] ( 8 ) display also that the nitro groups in these complexes are in a cis‐arrangement. 相似文献
14.
Trichloroberyllate Complexes of Dimethyl Cyanamide, Morpholine, and 4,4′‐Bipyridine The trichloroberyllate complexes (Ph4P)[BeCl3(NCNMe2)] ( 1 ), (Ph4P)[BeCl3{HN(CH2)4O}] ( 2 ), and (Ph4P)2[(BeCl3)2(4,4′‐bipy)] ( 3 ) were prepared by reactions of (Ph4P)2[Be2Cl6] with dimethyl cyanamide, trimethylsilylmorpholinate, and 4,4′‐bipyridine, respectively, in dichloromethane solutions. 1 ‐ 3 were characterized by X‐ray crystallography and by IR‐spectroscopy. 1 ·CH2Cl2: Space group P1, Z = 1, lattice dimensions at 173 K: a = 714.2(1), b = 919.5(2), c = 1233.4(2) pm, α = 94.97(1)°, β = 90.86(1)°, γ = 111.90(1)°, R1 = 0.0310. In the complex anion [BeCl3(NCNMe2)]? the dimethyl cyanamide ligand is coordinated via a linear Be–N≡C‐NMe2 arrangement, the CH2Cl2 molecules forming linear chains by hydrogen bridges ···HCH···Cl··· with the chlorine atoms of the {BeCl3?} groups. 2 : Space group , Z = 2, lattice dimensions at 173 K: a = 1050.9(1), b = 1099.7(1), c = 1308.3(2) pm, α = 87.57(1)°, β = 70.97(1)°, γ = 74.58(1)°, R1 = 0.0397. The complex anions are dimerized by centrosymmetric puckered eight‐membered [Be–N–H···Cl]2 rings. 3 ·2CH2Cl2: Space group , Z = 2, lattice dimensions at 173 K: a = 1095.4(1), b = 1559.6(2), c = 1869.8(3) pm, α = 79.12(1)°, β = 73.83(1)°, γ = 78.76(1)°, R1 = 0.0548. The complex contains dianions [Cl3Be(μ‐bipy)BeCl3]2? with Be–N distances of 177.0(6) and 178.5(6) pm. Both {BeCl3}? groups form C–H···Cl hydrogen bridges with the dichloromethane molecules. 相似文献
15.
《Acta Crystallographica. Section C, Structural Chemistry》2018,74(3):256-262
Using polynuclear metal clusters as nodes, many high‐symmetry high‐connectivity nets, like 8‐connnected bcu and 12‐connected fcu , have been attained in metal–organic frameworks (MOFs). However, construction of low‐symmetry high‐connected MOFs with a novel topology still remains a big challenge. For example, a uninodal 8‐connected lsz network, observed in inorganic ZrSiO4, has not been topologically identified in MOFs. Using 2,2′‐difluorobiphenyl‐4,4′‐dicarboxylic acid (H2L) as a new linker and 1,2,4‐triazole (Htrz) as a coligand, a novel three‐dimensional CdII–MOF, namely poly[tetrakis(μ4‐2,2′‐difluorobiphenyl‐4,4′‐dicarboxylato‐κ5O1,O1′:O1′:O4:O4′)tetrakis(N,N‐dimethylformamide‐κO)tetrakis(μ3‐1,2,4‐triazolato‐κ3N1:N2:N4)hexacadmium(II)], [Cd6(C14H6F2O4)4(C2H2N3)4(C3H7NO)4]n, (I), has been prepared. Single‐crystal structure analysis indicates that six different CdII ions co‐exist in (I) and each CdII ion displays a distorted [CdO4N2] octahedral geometry with four equatorial O atoms and two axial N atoms. Three CdII ions are connected by four carboxylate groups and four trz− ligands to form a linear trinuclear [Cd3(COO)4(trz)4] cluster, as do the other three CdII ions. Two Cd3 clusters are linked by trz− ligands in a μ1,2,4‐bridging mode to produce a two‐dimensional CdII–triazolate layer with (6,3) topology in the ab plane. These two‐dimensional layers are further pillared by the L2− ligands along the c axis to generate a complicated three‐dimensional framework. Topologically, regarding the Cd3 cluster as an 8‐connected node, the whole architecture of (I) is a uninodal 8‐connected lsz framework with the Schläfli symbol (422·66). Complex (I) was further characterized by elemental analysis, IR spectroscopy, powder X‐ray diffraction, thermogravimetric analysis and a photoluminescence study. MOF (I) has a high thermal and water stability. 相似文献
16.
A simple and sensitive fluorescent staining method for the detection of proteins in SDS‐PAGE, namely IB (improved 4,4′‐dianilino‐1,1′‐binaphthyl‐5,5′‐disulfonic acid) stain, is described. Non‐covalent hydrophobic probe 4,4′‐dianilino‐1,1′‐binaphthyl‐5,5′‐disulfonic acid was applied as a fluorescent dye, which can bind to hydrophobic sites in proteins non‐specifically. As low as 1 ng of protein band can be detected briefly by 30 min washing followed by 15 min staining without the aiding of stop or destaining step. The sensitivity of the new presented protocol is similar to that of SYPRO Ruby, which has been widely accepted in proteomic research. Comparative analysis of the MS compatibility of IB stain and SYPRO Ruby stain allowed us to address that IB stain is compatible with the downstream of protein identification by PMF. 相似文献
17.
Juan Granifo Beatriz Arvalo Rubn Gavio Sebastin Surez Ricardo Baggio 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(12):932-938
4′‐Substituted derivatives of 2,2′:6′,2′′‐terpyridine with N‐containing heteroaromatic substituents, such as pyridyl groups, might be able to coordinate metal centres through the extra N‐donor atom, in addition to the chelating terpyridine N atoms. The incorporation of these peripheral N‐donor sites would also allow for the diversification of the types of noncovalent interactions present, such as hydrogen bonding and π–π stacking. The title compound, C24H16N4, consists of a 2,2′:6′,2′′‐terpyridine nucleus (tpy), with a pendant isoquinoline group (isq) bound at the central pyridine (py) ring. The tpy nucleus deviates slightly from planarity, with interplanar angles between the lateral and central py rings in the range 2.24 (7)–7.90 (7)°, while the isq group is rotated significantly [by 46.57 (6)°] out of this planar scheme, associated with a short Htpy…Hisq contact of 2.32 Å. There are no strong noncovalent interactions in the structure, the main ones being of the π–π and C—H…π types, giving rise to columnar arrays along [001], further linked by C—H…N hydrogen bonds into a three‐dimensional supramolecular structure. An Atoms In Molecules (AIM) analysis of the noncovalent interactions provided illuminating results, and while confirming the bonding character for all those interactions unquestionable from a geometrical point of view, it also provided answers for some cases where geometric parameters are not informative, in particular, the short Htpy…Hisq contact of 2.32 Å to which AIM ascribed an attractive character. 相似文献
18.
Xing‐Zhong Fang Qing‐Xuan Li Zhen Wang Zheng‐Hua Yang Lian‐Xun Gao Meng‐Xian Ding 《Journal of polymer science. Part A, Polymer chemistry》2004,42(9):2130-2144
A new synthetic route to 2,2′,3,3′‐BTDA (where BTDA is benzophenonetetracarboxylic dianhydride), an isomer of 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA, is described. Single‐crystal X‐ray diffraction analysis of 2,2′,3,3′‐BTDA has shown that this dianhydride has a bent and noncoplanar structure. The polymerizations of 2,2′,3,3′‐BTDA with 4,4′‐oxydianiline (ODA) and 4,4′‐bis(4‐aminophenoxy)benzene (TPEQ) have been investigated with a conventional two‐step process. A trend of cyclic oligomers forming in the reaction of 2,2′,3,3′‐BTDA and ODA has been found and characterized with IR, NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and elemental analyses. Films based on 2,2′,3,3′‐BTDA/TPEQ can only be obtained from corresponding polyimide (PI) solutions prepared by chemical imidization because those from their polyamic acids by thermal imidization are brittle. PIs from 2,2′,3,3′‐BTDA have lower inherent viscosities and worse thermal and mechanical properties than the corresponding 2,3′,3′,4′‐BTDA‐ and 3,3′,4,4′‐BTDA‐based PIs. PIs from 2,2′,3,3′‐BTDA and 2,3′,3′,4′‐BTDA are amorphous, whereas those from 3,3′,4,4′‐BTDA have some crystallinity, according to wide‐angle X‐ray diffraction. Furthermore, PIs from 2,2′,3,3′‐BTDA have better solubility, higher glass‐transition temperatures, and higher melt viscosity than those from 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA. Model compounds have been prepared to explain the order of the glass‐transition temperatures found in the isomeric PI series. The isomer effects on the PI properties are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2130–2144, 2004 相似文献
19.
Adel A. Mohamed 《International journal of quantum chemistry》2000,79(6):367-377
Conformational properties of 2,2′‐bithiazole and 4,4′‐dimethyl‐2,2′‐ bithiazole have been studied by using AM1 and PM3 semiemperical methods and ab initio HF/6‐311+G* and B3LYP/6‐311+G* calculations. All methods agree that the planar s‐trans conformation is the global minimum and the perpendicular conformation is the transition state. Additional local minima were found using the Hartree–Fock (HF) and B3LYP levels for 2,2′‐bithiazole while for 4,4′‐dimethyl derivative the minima was located only at the MP2//B3LYP level. The barrier heights for rotation are 1.72, 7.69, and 7.88 kcal/mol at the PM3, HF, and B3LYP levels, respectively, and methyl substitution did not affect appreciably this value. Fourier expansion terms and bond orders were used to explain the origins of the rotational barrier in terms of π conjugation, electrostatic interaction, and steric effects, which represent the main factors in the shape of the rotational barrier. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 79: 367–377, 2000 相似文献
20.
Igor V. Kazakov Michael Bodensteiner Alexey Y. Timoshkin 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(3):312-314
The molecular structures of trichlorido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIII atom displaying an octahedral geometry. It is shown that the Ga—N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2′:6′,2′′‐terpyridine donor as well. 相似文献